题目描述
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
思路
首先要理解二叉树的4中遍历方式(前、中、后、层)。然后根据前序遍历的特点可知,第一个数必定是root。又根据中序的特点(左子树 -> 根 -> 右子树),找到root在中序遍历结果的位置pos,则pos前面的数为左子树,pos后面的数为右子树。然后继续将左子树和右子树继续拆分,递归实现。
代码
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
unordered_map<int, int> myMap;
TreeNode* reConstructBinaryTree(vector<int> pre,vector<int> vin) {
if (pre.empty() || vin.empty() || pre.size() != vin.size()) return nullptr;
int n = pre.size();
for (int i = 0; i < n; ++i)
myMap[vin[i]] = i;
return dfs(pre, vin, 0, n-1, 0, n-1);
}
TreeNode* dfs(vector<int>& pre, vector<int>& vin, int pleft, int pright, int vleft, int vright){
if (pleft > pright) return nullptr;
int curVal = pre[pleft];
int index = myMap[curVal];
int len = index - vleft;
TreeNode* root = new TreeNode(curVal);
root->left = dfs(pre, vin, pleft+1, pleft+len, vleft, index-1);
root->right = dfs(pre, vin, pleft+len+1, pright, index+1, vright);
return root;
}
};