前言
LLM默认是没有记忆功能的,现象如下:
那……如何让他能有“记性”呢,下面给大家介绍个新模块“Memory”
简介
记忆组件解决的两大问题
-
历史如何存储
-
历史如何查询 LangChain提供了好几种记忆组件类型,这里先给大家介绍三种(其他的都很类似)
ConversationBufferMemory
程序
from langchain.memory import ConversationBufferMemory
memory = ConversationBufferMemory()
memory.save_context({"HumanMessage": "你好啊, AI小助手。"}, {"AIMessage": "嗨,有什么我可以帮助你?"})
res_save = memory.chat_memory.messages
print("Save:", res_save)
# 保存记忆
memory.save_context({"HumanMessage": "今天你过得怎么样?"}, {"AIMessage": "我过得很好,你今天有什么开心的事吗?"})
# 加载记忆
res_load = memory.load_memory_variables({})
print("Load:", res_load)
#清除记忆
memory.clear()
print("History:", memory.load_memory_variables({}))
输出结果
Save: [HumanMessage(content=