AI菜鸟向前飞 — LangChain系列之十四 - Agent系列:从现象看机制(上篇)

上一篇介绍了Agent与LangGraph的基础技能Tool的必知必会

AI菜鸟向前飞 — LangChain系列之十三 - 关于Tool的必知必会

前面已经详细介绍了Prompt、RAG,终于来到Agent系列(别急后面还有LangGraph),大家可以先看下这张图:    看完我这系列就都懂了:)

图片

牛刀初试

    由于本篇是入门,我们直接边看程序边熟悉整个过程吧 先以BaseTool的方式实现一个Tool,代码如下:

class search_article(BaseTool):
    name = "search_article"
    description = "查询所有的文章来源"
    def _run(self, topic: str):
        return chain_rag.invoke({"question": topic})

关于chain_rag的内容,请参考我的这篇公众号文章

LangChain实战技巧之二:RunnablePassthrough.assign的两则妙用

我们看看两种Agent的“书写”方式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值