sklearn模型选择--模型验证方法

本文详细介绍了模型验证的五种核心方法:交叉验证计算得分、输入数据点的交叉验证估计、学习曲线绘制、验证曲线绘制及交叉验证得分的重要性排序。通过这些方法,可以有效地评估和优化机器学习模型的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

模型验证(model validation)方法
1.通过交叉验证计算得分sklearn.model_selection.cross_val_score(estimator,X)
在这里插入图片描述

2.对输入数据点产生交叉验证估计
在这里插入图片描述
3.计算并绘制模型的学习曲线
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4,计算并绘制模型的验证曲线
在这里插入图片描述

5.(不常用)通过排序评估交叉验证得分的重要性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值