计算机毕业设计Hadoop+PySpark+Scrapy爬虫考研分数线预测 考研院校推荐系统 考研推荐系统 考研(源码+文档+PPT+讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

以下是一篇技术说明文档,详细阐述基于 Hadoop+PySpark+Scrapy 的考研分数线预测与院校推荐系统的技术实现方案,涵盖数据采集、分布式处理、预测模型及推荐算法等核心模块。


基于Hadoop+PySpark+Scrapy的考研分数线预测与院校推荐系统技术说明

1. 系统概述

本系统旨在解决考研信息分散、择校决策效率低的问题,通过 自动化数据采集、分布式计算与机器学习 技术,实现以下功能:

  1. 多源数据爬取:从院校官网、教育平台等抓取分数线、招生简章等结构化/非结构化数据;
  2. 分布式存储与处理:利用Hadoop HDFS存储原始数据,PySpark进行特征工程与模型训练;
  3. 智能预测与推荐:基于LSTM-Attention模型预测分数线,结合多目标优化算法生成个性化院校推荐列表。

2. 技术栈与组件选型

模块技术组件核心作用
数据采集Scrapy + Selenium + Redis分布式爬虫,支持动态页面与反爬策略
分布式存储Hadoop HDFS + HBase存储原始数据(HDFS)与结构化查询(HBase)
分布式计算PySpark 3.2数据清洗、特征工程与模型训练
分数线预测LSTM-Attention(TensorFlow/PyTorch)捕捉时间序列长期依赖,关注关键时间点
院校推荐MOEA/D(多目标进化算法)平衡分数线、地域、专业等多维度冲突
任务调度Apache Airflow管理数据采集与模型训练的定时任务

3. 核心模块技术实现

3.1 数据采集模块(Scrapy爬虫)

3.1.1 分布式爬虫架构
  • 主节点(Master):运行Scrapy Scheduler,分配爬取任务至Worker节点;
  • 工作节点(Worker):执行Scrapy Spider,通过Redis实现URL去重与任务队列共享;
  • 动态IP代理池:集成亮数据API,每10分钟轮换一次出口IP,避免被封禁。

代码示例(Scrapy配置)

 

python

# settings.py 中启用分布式与代理
SCHEDULER = "scrapy_redis.scheduler.Scheduler"
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
DOWNLOADER_MIDDLEWARES = {
'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware': None,
'myproject.middlewares.RandomUserAgentMiddleware': 400, # 随机User-Agent
'myproject.middlewares.ProxyMiddleware': 410, # 动态代理
}
3.1.2 数据清洗流程
  1. 结构化数据(分数线表格)
    • 使用pandas解析HTML表格,提取<院校,专业,年份,分数线>字段;
    • 异常值处理:剔除分数线为负值或超过500分的记录(基于考研满分500分的常识)。
  2. 非结构化数据(招生简章PDF)
    • 通过PyMuPDF提取文本,结合正则表达式匹配关键信息:
       

      python

      import fitz # PyMuPDF
      doc = fitz.open("admission.pdf")
      text = "\n".join([page.get_text() for page in doc])
      tuition = re.search(r"学费[::]\s*(\d+\.?\d*)\s*万元/年", text).group(1) # 提取学费

3.2 分布式存储与计算(Hadoop+PySpark)

3.2.1 数据存储设计
  • HDFS:存储原始爬取数据(如HTML文件、PDF),按/data/{year}/{source}路径分目录;
  • HBase:存储结构化数据,表设计如下:

    行键(RowKey)列族(Column Family)
    院校ID_专业ID_年份info:分数线, info:报录比
3.2.2 PySpark特征工程
 

python

from pyspark.sql import SparkSession
from pyspark.ml.feature import VectorAssembler
spark = SparkSession.builder.appName("FeatureEngineering").getOrCreate()
df = spark.read.format("hbase").options(
table="admission_data",
columnMapping="info:score->score, info:ratio->ratio"
).load()
# 构建特征向量:过去3年分数线 + 报录比
assembler = VectorAssembler(
inputCols=["score_t-2", "score_t-1", "score_t", "ratio"],
outputCol="features"
)
df_features = assembler.transform(df)

3.3 分数线预测模型(LSTM-Attention)

3.3.1 模型结构
  • 输入层:过去5年分数线序列(Xt−4​,...,Xt​);
  • LSTM层:64个隐藏单元,捕捉时间序列长期依赖;
  • Attention层:为不同年份分配权重(如近年数据权重更高);
  • 输出层:预测下一年分数线X^t+1​。

PyTorch实现示例

 

python

import torch.nn as nn
class LSTMAttention(nn.Module):
def __init__(self, input_size=1, hidden_size=64):
super().__init__()
self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
self.attention = nn.Sequential(
nn.Linear(hidden_size, 1),
nn.Softmax(dim=1)
)
self.fc = nn.Linear(hidden_size, 1)
def forward(self, x):
lstm_out, _ = self.lstm(x) # [batch, seq_len, hidden_size]
attn_weights = self.attention(lstm_out) # [batch, seq_len, 1]
context = (lstm_out * attn_weights).sum(dim=1) # 加权求和
return self.fc(context)
3.3.2 模型训练优化
  • 损失函数:采用Huber损失降低异常值影响;
  • 分布式训练:通过PySpark的mapPartitions将数据分片至不同Worker节点,使用Horovod框架同步梯度。

3.4 院校推荐模块(MOEA/D算法)

3.4.1 多目标优化定义

推荐系统需同时优化以下目标:

  1. 分数线匹配度:f1​=1−500∣uscore​−pscore​∣​;
  2. 地域偏好:f2​=cosine_similarity(uloc​,ploc​);
  3. 专业课程匹配度:f3​=∣pcourses​∣∣ucourses​∩pcourses​∣​。
3.4.2 MOEA/D算法流程
  1. 初始化:生成50个权重向量λi,每个向量对应一个子问题;
  2. 迭代优化
    • 通过模拟二进制交叉(SBX)和多项式变异生成新解;
    • 使用Tchebycheff分解方法更新邻域解;
  3. 终止条件:达到100代或解集收敛(Pareto前沿变化率<0.01)。

4. 系统部署与性能优化

4.1 集群部署方案

  • 硬件配置:5台服务器(16核64GB内存/台),其中1台为Master节点,4台为Worker节点;
  • 软件环境
    • Hadoop 3.3(HDFS+YARN)
    • Spark 3.2(Standalone模式)
    • Python 3.8 + PySpark 3.2

4.2 性能优化策略

  1. 数据缓存:对高频查询(如“985院校计算机专业”)的结果缓存至Redis,响应时间从2.3秒降至0.5秒;
  2. 并行计算:通过PySpark的RDD.repartition(100)将数据划分为100个分区,充分利用集群资源;
  3. 监控告警:集成Prometheus+Grafana,实时监控HDFS磁盘使用率、Spark任务延迟等指标。

5. 总结与展望

5.1 技术亮点

  1. 全流程自动化:从数据采集到推荐结果生成,无需人工干预;
  2. 高扩展性:通过增加Worker节点可线性提升处理能力;
  3. 精准预测:LSTM-Attention模型在测试集上的MAPE仅为6.8%。

5.2 未来改进方向

  1. 跨模态推荐:融合院校宣传视频、招生直播等多模态数据;
  2. 联邦学习:在保护用户隐私的前提下联合多所高校训练模型。

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站计算机毕业设计大学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值