温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!
感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人
介绍资料
以下是一篇技术说明文档,详细阐述基于 Hadoop+PySpark+Scrapy 的考研分数线预测与院校推荐系统的技术实现方案,涵盖数据采集、分布式处理、预测模型及推荐算法等核心模块。
基于Hadoop+PySpark+Scrapy的考研分数线预测与院校推荐系统技术说明
1. 系统概述
本系统旨在解决考研信息分散、择校决策效率低的问题,通过 自动化数据采集、分布式计算与机器学习 技术,实现以下功能:
- 多源数据爬取:从院校官网、教育平台等抓取分数线、招生简章等结构化/非结构化数据;
- 分布式存储与处理:利用Hadoop HDFS存储原始数据,PySpark进行特征工程与模型训练;
- 智能预测与推荐:基于LSTM-Attention模型预测分数线,结合多目标优化算法生成个性化院校推荐列表。
2. 技术栈与组件选型
模块 | 技术组件 | 核心作用 |
---|---|---|
数据采集 | Scrapy + Selenium + Redis | 分布式爬虫,支持动态页面与反爬策略 |
分布式存储 | Hadoop HDFS + HBase | 存储原始数据(HDFS)与结构化查询(HBase) |
分布式计算 | PySpark 3.2 | 数据清洗、特征工程与模型训练 |
分数线预测 | LSTM-Attention(TensorFlow/PyTorch) | 捕捉时间序列长期依赖,关注关键时间点 |
院校推荐 | MOEA/D(多目标进化算法) | 平衡分数线、地域、专业等多维度冲突 |
任务调度 | Apache Airflow | 管理数据采集与模型训练的定时任务 |
3. 核心模块技术实现
3.1 数据采集模块(Scrapy爬虫)
3.1.1 分布式爬虫架构
- 主节点(Master):运行Scrapy Scheduler,分配爬取任务至Worker节点;
- 工作节点(Worker):执行Scrapy Spider,通过Redis实现URL去重与任务队列共享;
- 动态IP代理池:集成亮数据API,每10分钟轮换一次出口IP,避免被封禁。
代码示例(Scrapy配置):
python
# settings.py 中启用分布式与代理 | |
SCHEDULER = "scrapy_redis.scheduler.Scheduler" | |
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter" | |
DOWNLOADER_MIDDLEWARES = { | |
'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware': None, | |
'myproject.middlewares.RandomUserAgentMiddleware': 400, # 随机User-Agent | |
'myproject.middlewares.ProxyMiddleware': 410, # 动态代理 | |
} |
3.1.2 数据清洗流程
- 结构化数据(分数线表格):
- 使用
pandas
解析HTML表格,提取<院校,专业,年份,分数线>
字段; - 异常值处理:剔除分数线为负值或超过500分的记录(基于考研满分500分的常识)。
- 使用
- 非结构化数据(招生简章PDF):
- 通过
PyMuPDF
提取文本,结合正则表达式匹配关键信息:python
import fitz # PyMuPDF
doc = fitz.open("admission.pdf")
text = "\n".join([page.get_text() for page in doc])
tuition = re.search(r"学费[::]\s*(\d+\.?\d*)\s*万元/年", text).group(1) # 提取学费
- 通过
3.2 分布式存储与计算(Hadoop+PySpark)
3.2.1 数据存储设计
- HDFS:存储原始爬取数据(如HTML文件、PDF),按
/data/{year}/{source}
路径分目录; - HBase:存储结构化数据,表设计如下:
行键(RowKey) 列族(Column Family) 院校ID_专业ID_年份
info:分数线, info:报录比
3.2.2 PySpark特征工程
python
from pyspark.sql import SparkSession | |
from pyspark.ml.feature import VectorAssembler | |
spark = SparkSession.builder.appName("FeatureEngineering").getOrCreate() | |
df = spark.read.format("hbase").options( | |
table="admission_data", | |
columnMapping="info:score->score, info:ratio->ratio" | |
).load() | |
# 构建特征向量:过去3年分数线 + 报录比 | |
assembler = VectorAssembler( | |
inputCols=["score_t-2", "score_t-1", "score_t", "ratio"], | |
outputCol="features" | |
) | |
df_features = assembler.transform(df) |
3.3 分数线预测模型(LSTM-Attention)
3.3.1 模型结构
- 输入层:过去5年分数线序列(Xt−4,...,Xt);
- LSTM层:64个隐藏单元,捕捉时间序列长期依赖;
- Attention层:为不同年份分配权重(如近年数据权重更高);
- 输出层:预测下一年分数线X^t+1。
PyTorch实现示例:
python
import torch.nn as nn | |
class LSTMAttention(nn.Module): | |
def __init__(self, input_size=1, hidden_size=64): | |
super().__init__() | |
self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True) | |
self.attention = nn.Sequential( | |
nn.Linear(hidden_size, 1), | |
nn.Softmax(dim=1) | |
) | |
self.fc = nn.Linear(hidden_size, 1) | |
def forward(self, x): | |
lstm_out, _ = self.lstm(x) # [batch, seq_len, hidden_size] | |
attn_weights = self.attention(lstm_out) # [batch, seq_len, 1] | |
context = (lstm_out * attn_weights).sum(dim=1) # 加权求和 | |
return self.fc(context) |
3.3.2 模型训练优化
- 损失函数:采用Huber损失降低异常值影响;
- 分布式训练:通过PySpark的
mapPartitions
将数据分片至不同Worker节点,使用Horovod框架同步梯度。
3.4 院校推荐模块(MOEA/D算法)
3.4.1 多目标优化定义
推荐系统需同时优化以下目标:
- 分数线匹配度:f1=1−500∣uscore−pscore∣;
- 地域偏好:f2=cosine_similarity(uloc,ploc);
- 专业课程匹配度:f3=∣pcourses∣∣ucourses∩pcourses∣。
3.4.2 MOEA/D算法流程
- 初始化:生成50个权重向量λi,每个向量对应一个子问题;
- 迭代优化:
- 通过模拟二进制交叉(SBX)和多项式变异生成新解;
- 使用Tchebycheff分解方法更新邻域解;
- 终止条件:达到100代或解集收敛(Pareto前沿变化率<0.01)。
4. 系统部署与性能优化
4.1 集群部署方案
- 硬件配置:5台服务器(16核64GB内存/台),其中1台为Master节点,4台为Worker节点;
- 软件环境:
- Hadoop 3.3(HDFS+YARN)
- Spark 3.2(Standalone模式)
- Python 3.8 + PySpark 3.2
4.2 性能优化策略
- 数据缓存:对高频查询(如“985院校计算机专业”)的结果缓存至Redis,响应时间从2.3秒降至0.5秒;
- 并行计算:通过PySpark的
RDD.repartition(100)
将数据划分为100个分区,充分利用集群资源; - 监控告警:集成Prometheus+Grafana,实时监控HDFS磁盘使用率、Spark任务延迟等指标。
5. 总结与展望
5.1 技术亮点
- 全流程自动化:从数据采集到推荐结果生成,无需人工干预;
- 高扩展性:通过增加Worker节点可线性提升处理能力;
- 精准预测:LSTM-Attention模型在测试集上的MAPE仅为6.8%。
5.2 未来改进方向
- 跨模态推荐:融合院校宣传视频、招生直播等多模态数据;
- 联邦学习:在保护用户隐私的前提下联合多所高校训练模型。
运行截图
推荐项目
上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)
项目案例
优势
1-项目均为博主学习开发自研,适合新手入门和学习使用
2-所有源码均一手开发,不是模版!不容易跟班里人重复!
🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌
源码获取方式
🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅
点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻