计算机毕业设计Django+Vue.js游戏推荐系统 游戏可视化 大数据毕业设计(源码+文档+PPT+讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

以下是一篇关于《Django+Vue.js游戏推荐系统》的任务书范文,包含明确的任务分解、责任分工与时间节点,供参考:


任务书

项目名称:基于Django与Vue.js的游戏推荐系统开发

一、项目目标

开发一个支持个性化推荐、用户交互反馈的游戏推荐平台,采用前后端分离架构(Django+Vue.js),实现以下功能:

  1. 用户注册登录与兴趣标签管理。
  2. 游戏分类展示与搜索功能。
  3. 基于混合推荐算法(协同过滤+深度学习)的实时推荐。
  4. 用户行为反馈(点赞/评分)与推荐结果动态优化。

二、任务分解与责任分工

1. 需求分析与设计阶段(第1-2周)

  • 任务1.1:需求调研与文档编写
    • 负责人:产品经理(张三)
    • 内容
      • 收集用户需求(如推荐精度、交互方式)。
      • 编写《需求规格说明书》,明确功能模块与非功能性需求(如响应时间≤2s)。
    • 交付物:需求文档、用例图。
  • 任务1.2:系统架构设计
    • 负责人:技术架构师(李四)
    • 内容
      • 设计前后端分离架构(Django REST API + Vue.js前端)。
      • 确定数据库选型(MySQL主库+Redis缓存)与部署方案(Docker+Nginx)。
    • 交付物:架构设计图、数据库ER图。

2. 后端开发阶段(第3-6周)

  • 任务2.1:Django基础框架搭建
    • 负责人:后端工程师(王五)
    • 内容
      • 初始化Django项目,配置DRF(Django REST Framework)。
      • 实现用户认证模块(JWT令牌)。
    • 交付物:可运行的Django项目基础代码。
  • 任务2.2:推荐算法开发与集成
    • 负责人:算法工程师(赵六)
    • 内容
      • 实现协同过滤算法(UserCF/ItemCF)与NCF深度学习模型。
      • 使用Scikit-learn训练模型,通过TensorFlow Serving部署预测接口。
    • 交付物:推荐算法代码、模型训练日志。
  • 任务2.3:API接口开发
    • 负责人:后端工程师(王五)
    • 内容
      • 开发游戏信息CRUD接口、推荐结果接口(支持分页)。
      • 集成Redis缓存热门推荐数据。
    • 交付物:API文档(Swagger生成)、接口测试报告。

3. 前端开发阶段(第5-8周)

  • 任务3.1:Vue.js项目初始化
    • 负责人:前端工程师(孙七)
    • 内容
      • 使用Vue CLI创建项目,配置Vue Router与Vuex。
      • 集成Element UI组件库,实现基础布局(导航栏、游戏卡片)。
    • 交付物:前端项目基础代码。
  • 任务3.2:核心页面开发
    • 负责人:前端工程师(孙七)
    • 内容
      • 实现游戏列表页(支持分类筛选)、详情页(评分、标签展示)。
      • 开发推荐页(轮播图+列表),集成ECharts可视化推荐理由。
    • 交付物:可交互的前端页面原型。
  • 任务3.3:前后端联调
    • 负责人:全栈工程师(李四)
    • 内容
      • 使用Axios调用后端API,处理跨域问题。
      • 实现用户行为反馈(点赞/踩)的实时更新。
    • 交付物:联调通过的完整系统。

4. 测试与优化阶段(第9-10周)

  • 任务4.1:功能测试
    • 负责人:测试工程师(周八)
    • 内容
      • 编写测试用例(如推荐结果覆盖率、接口异常处理)。
      • 使用Postman进行API测试,Selenium进行UI自动化测试。
    • 交付物:测试报告、Bug清单。
  • 任务4.2:性能优化
    • 负责人:技术架构师(李四)
    • 内容
      • 使用JMeter进行压力测试,优化MySQL查询与Redis缓存策略。
      • 对NCF模型进行量化压缩,减少推理延迟。
    • 交付物:性能优化报告。

5. 部署与上线阶段(第11周)

  • 任务5.1:服务器部署
    • 负责人:运维工程师(吴九)
    • 内容
      • 在阿里云ECS上部署Docker容器,配置Nginx反向代理。
      • 设置CI/CD流水线(GitHub Actions自动构建与部署)。
    • 交付物:部署文档、线上访问地址。
  • 任务5.2:用户培训与验收
    • 负责人:产品经理(张三)
    • 内容
      • 编写用户操作手册,组织内部验收测试。
      • 收集反馈并修复剩余Bug。
    • 交付物:验收报告、系统操作视频。

三、时间计划表

阶段时间范围里程碑交付物
需求分析第1-2周需求文档、用例图
后端开发第3-6周API文档、推荐算法代码
前端开发第5-8周可交互前端页面、联调通过系统
测试优化第9-10周测试报告、性能优化方案
部署上线第11周线上系统、验收报告

四、资源需求

  1. 硬件资源:阿里云ECS服务器(4核8G)、Docker环境。
  2. 软件资源:Python 3.8、Django 4.0、Vue.js 3.0、MySQL 8.0、Redis 6.0。
  3. 数据资源:Steam游戏数据集(含用户评分、游戏标签)。

五、风险评估与应对

风险类型描述应对措施
技术风险NCF模型推理延迟过高采用模型量化或切换轻量级模型
进度风险算法训练时间超出预期提前准备备用数据集或简化模型
人员风险核心成员离职文档标准化,交叉培训备份人员

项目负责人签字:________________
日期:________________


此任务书结构清晰,明确划分了技术、测试、部署等环节的责任人与交付成果,可根据实际项目规模调整任务粒度与资源分配。

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站计算机毕业设计大学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值