计算机毕业设计hadoop+spark+hive租房推荐系统 租房可视化 大数据毕业设计(源码 +LW文档+PPT+讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

任务书:基于Hadoop+Spark+Hive的租房推荐系统与可视化平台开发

一、项目背景与目标

1.1 项目背景

随着城市化进程加速,租房市场需求激增,但传统租房平台存在以下问题:

  • 信息过载:单城市日均挂牌房源超50万条,用户筛选耗时长;
  • 匹配低效:依赖关键词匹配,推荐精准度不足35%;
  • 决策盲区:缺乏多维数据可视化(如交通、教育、租金趋势),用户难以综合评估房源价值。

1.2 项目目标

开发一套基于Hadoop+Spark+Hive的租房推荐与可视化系统,实现:

  1. 高效数据处理:利用Hadoop分布式存储海量房源数据,Spark实时处理用户行为;
  2. 精准推荐:融合时空特征、多模态内容(图片+文本)的混合推荐算法;
  3. 交互式可视化:通过ECharts/D3.js展示房源分布、通勤模拟、租金趋势等动态分析。

预期成果

  • 系统支持日均10万级用户请求,推荐响应时间≤200ms;
  • 用户找房时间降低60%以上,推荐转化率提升20%-30%;
  • 发表1篇SCI/EI论文,申请1项软件著作权。

二、任务分解与责任分配

2.1 数据采集与预处理模块

负责人:数据组(张三、李四)
任务内容

  1. 数据源整合
    • 结构化数据:房源基本信息(面积、租金、户型)、用户行为日志(点击、收藏);
    • 非结构化数据:房源图片、VR全景视频、用户评论文本;
    • 外部数据:地铁线路(GeoJSON)、学校/商圈POI数据、手机信令热力数据。
  2. 数据清洗规则
    • 异常值处理:租金>同区域均价3倍的标记为“疑似虚假”;
    • 缺失值填充:使用KNN算法(k=5)预测缺失的“楼层”字段。

交付成果

  • 清洗后的结构化数据集(CSV/Parquet格式,≥100GB);
  • 数据质量报告(含缺失率、异常值统计)。

2.2 推荐算法开发模块

负责人:算法组(王五、赵六)
任务内容

  1. 时空协同过滤算法
    • 引入地理衰减因子:

wdist​=e−λ⋅d,λ=0.5(经验值)

 

其中$d$为用户位置与房源的直线距离(km);
  • 结合时间衰减因子:

wtime​=1+α⋅Δt1​,α=0.1(日衰减率)

 

其中$\Delta t$为用户上次浏览同类房源的天数。

2. 多模态内容推荐

  • 图片特征提取:使用ResNet-50预训练模型生成512维向量;
  • 文本语义分析:通过BERT-base模型获取768维嵌入向量;
  • 特征融合:采用加权拼接策略(权重通过网格搜索优化)。

交付成果

  • 训练好的推荐模型(PyTorch/Spark MLlib格式);
  • 算法实验报告(含准确率、召回率、F1值对比)。

2.3 大数据存储与计算模块

负责人:架构组(陈七、刘八)
任务内容

  1. Hadoop集群部署
    • 配置3节点Hadoop集群(1 Master + 2 Worker),存储原始数据;
    • 使用HDFS存储房源图片(分块压缩,块大小128MB)。
  2. Spark实时计算
    • 通过Spark Structured Streaming处理用户行为流,每5分钟更新一次推荐结果;
    • 使用Hive构建数据仓库,整合多源数据支持复杂查询(如“地铁10分钟内+月租<3000元”筛选)。

交付成果

  • 部署文档(含集群配置参数、监控脚本);
  • 性能测试报告(吞吐量≥10万条/秒,延迟≤500ms)。

2.4 可视化平台开发模块

负责人:前端组(周九、吴十)
任务内容

  1. 核心功能实现
    • 房源热力图:ECharts+WebGL渲染,支持20万级数据点,鼠标悬停显示详情;
    • 通勤模拟器:D3.js绘制地铁线路,计算步行+乘车时间(输入出发时间动态调整);
    • 价格趋势预测:PyTorch LSTM模型预测未来3个月租金走势(MAPE<7%)。
  2. 交互设计
    • 支持用户自定义筛选条件(户型、租金范围、通勤时间);
    • 提供“收藏对比”功能,允许用户保存多个房源进行横向分析。

交付成果

  • 可视化前端代码(Vue.js + ECharts/D3.js);
  • 用户测试反馈报告(含NPS评分、痛点统计)。

三、时间计划与里程碑

阶段时间节点关键任务交付成果
需求分析2024.09-10调研租房平台痛点,确定技术选型需求规格说明书
数据采集2024.11-12爬取58同城、贝壳找房等平台数据原始数据集(100GB+)
算法开发2025.01-03实现混合推荐模型,优化参数训练代码与实验报告
系统集成2025.04-06完成前后端联调,部署至阿里云ECS可运行系统原型
测试优化2025.07-08A/B测试对比传统推荐方案测试报告与改进方案
项目验收2025.09提交论文、软著申请材料最终验收报告

四、资源需求与预算

4.1 硬件资源

资源类型配置数量用途
云服务器阿里云ECS(4核16G,100GB SSD)3台Hadoop集群、Spark计算
对象存储OSS(标准存储,1TB容量)1个存储房源图片/视频

4.2 软件资源

  • 开发工具:IntelliJ IDEA(后端)、PyCharm(算法)、VS Code(前端);
  • 依赖库:Hadoop 3.3.6、Spark 3.5.0、Hive 3.1.3、PyTorch 2.0、ECharts 5.4。

4.3 经费预算

项目金额(元)说明
云服务器租赁8,000阿里云ECS(4核16G,3个月)
数据标注3,000人工标注500条房源描述质量
论文版面费2,500预计发表1篇EI会议论文
其他杂费1,500域名注册、SSL证书等
总计15,000

五、风险管理

5.1 技术风险

  • 风险描述:Spark实时计算可能因数据倾斜导致延迟;
  • 应对措施
    • 对用户行为日志按“用户ID”分区,避免单分区数据过大;
    • 设置Spark任务超时阈值(300秒),超时任务自动重试。

5.2 数据风险

  • 风险描述:外部数据源(如地铁线路)可能更新不及时;
  • 应对措施
    • 每周爬取一次公开数据接口,与本地数据比对差异;
    • 提供手动修正入口,允许运营人员更新POI信息。

六、验收标准

  1. 功能完整性
    • 支持房源推荐、可视化分析、用户反馈等核心功能;
    • 兼容Chrome/Firefox/Edge等主流浏览器。
  2. 性能指标
    • 推荐响应时间≤200ms(90%请求);
    • 可视化页面加载时间≤3秒(100Mbps带宽下)。
  3. 文档要求
    • 提供系统设计文档、用户手册、测试报告;
    • 代码注释覆盖率≥30%,关键逻辑附流程图说明。

任务书编制人:XXX
日期:2024年XX月XX日


备注:本任务书需经项目指导教师审核通过后执行,后续根据实际进展动态调整任务分工与时间计划。

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站计算机毕业设计大学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值