温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!
感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人
介绍资料
以下是一篇关于《Django+Vue.js中华古诗词知识图谱可视化与古诗词智能问答系统》的开题报告框架及内容示例,供参考:
开题报告
题目:Django+Vue.js中华古诗词知识图谱可视化与古诗词智能问答系统
一、研究背景与意义
- 背景
- 文化价值:中华古诗词是中华文化的重要载体,蕴含丰富的历史、哲学与美学价值。然而,传统诗词学习方式(如教材、文献)存在信息碎片化、检索效率低等问题。
- 技术趋势:知识图谱(Knowledge Graph)通过结构化数据构建语义网络,能够高效整合诗词、作者、朝代等关联信息;可视化技术可直观展示知识关系;智能问答系统(QA System)可实现自然语言交互,提升用户体验。
- 技术选型:Django(后端框架)提供高效的数据库管理与API开发能力;Vue.js(前端框架)支持动态数据绑定与组件化开发,适合构建交互式可视化界面。
- 意义
- 学术价值:探索知识图谱在传统文化领域的应用模式,推动跨学科研究(计算机+文学)。
- 应用价值:构建一个集诗词检索、知识关联分析、智能问答于一体的平台,辅助用户高效学习古诗词,传承中华文化。
二、国内外研究现状
- 知识图谱在文化领域的应用
- 国外研究:如Google Knowledge Graph、DBpedia等已实现大规模通用知识整合,但针对垂直领域(如古诗词)的深度挖掘较少。
- 国内研究:部分学者尝试构建诗词知识图谱(如“唐诗宋词图谱”),但多停留于静态展示,缺乏动态交互与问答功能。
- 智能问答系统研究
- 传统问答系统:基于关键词匹配或规则引擎,难以处理语义复杂性。
- 深度学习驱动:BERT、GPT等模型在开放域问答中表现优异,但需结合领域知识优化(如诗词语义理解)。
- 技术栈相关研究
- Django在Web开发中广泛应用,支持快速构建RESTful API;Vue.js在数据可视化(如ECharts集成)与响应式界面设计中优势显著。
三、研究目标与内容
- 研究目标
- 构建中华古诗词知识图谱,实现多维度数据关联(诗词-作者-朝代-意象等)。
- 开发基于Django+Vue.js的可视化平台,支持知识图谱的交互式探索。
- 设计智能问答模块,支持自然语言查询(如“李白描写月亮的诗有哪些?”)。
- 研究内容
- 数据层:
- 数据采集:从公开数据集(如“全唐诗”“全宋词”)及网络爬虫获取诗词文本与元数据。
- 知识抽取:使用NLP技术(命名实体识别、关系抽取)构建结构化知识图谱(Neo4j存储)。
- 后端层:
- 基于Django开发RESTful API,实现知识图谱查询、问答逻辑处理。
- 集成NLP模型(如BERT+CRF)提升问答语义理解能力。
- 前端层:
- 使用Vue.js构建响应式界面,集成ECharts/D3.js实现知识图谱可视化(力导向图、时间轴等)。
- 设计交互功能:节点点击展开、路径搜索、关键词高亮等。
- 问答模块:
- 规则引擎:基于关键词与图谱路径匹配的简单问答。
- 深度学习模型:微调BERT模型处理复杂语义问题(如诗词意境分析)。
- 数据层:
四、研究方法与技术路线
- 研究方法
- 文献分析法:梳理知识图谱、智能问答相关技术文献。
- 实验法:对比不同NLP模型在诗词问答中的效果。
- 系统开发法:采用前后端分离架构,分模块实现功能。
- 技术路线
mermaid
graph TD
A[数据采集与清洗] --> B[知识抽取与图谱构建]
B --> C[Neo4j图数据库存储]
C --> D[Django后端API开发]
D --> E[Vue.js前端可视化]
D --> F[智能问答模块]
E --> G[用户交互界面]
F --> G
五、预期成果与创新点
- 预期成果
- 完成中华古诗词知识图谱构建(含10,000+诗词节点)。
- 实现可视化平台,支持图谱探索与智能问答功能。
- 发表1篇核心期刊论文或申请1项软件著作权。
- 创新点
- 跨学科融合:将知识图谱与古诗词研究结合,填补垂直领域应用空白。
- 混合问答模式:融合规则引擎与深度学习模型,提升问答准确率与鲁棒性。
- 交互式可视化:通过动态图谱展示诗词历史演变与意象关联,增强用户体验。
六、进度安排
阶段 | 时间 | 任务 |
---|---|---|
1 | 1-2月 | 文献调研与需求分析 |
2 | 3-4月 | 数据采集与知识图谱构建 |
3 | 5-6月 | 后端API开发与问答模型训练 |
4 | 7-8月 | 前端可视化与系统集成 |
5 | 9-10月 | 系统测试与优化 |
6 | 11-12月 | 论文撰写与答辩准备 |
七、参考文献
[1] 王伟等. 知识图谱构建与应用综述[J]. 计算机学报, 2022.
[2] Devlin J, et al. BERT: Pre-training of Deep Bidirectional Transformers[C]. NAACL, 2019.
[3] Django官方文档. https://docs.djangoproject.com/
[4] Vue.js官方文档. https://vuejs.org/
[5] 李明等. 基于Neo4j的唐诗知识图谱构建研究[J]. 图书馆学研究, 2021.
八、指导教师意见
(待填写)
备注:可根据实际研究方向调整技术细节(如替换NLP模型或可视化库),并补充具体数据集来源与实验设计。
运行截图
推荐项目
上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)
项目案例
优势
1-项目均为博主学习开发自研,适合新手入门和学习使用
2-所有源码均一手开发,不是模版!不容易跟班里人重复!
🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌
源码获取方式
🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅
点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻