计算机毕业设计Django+Vue.js中华古诗词知识图谱可视化 古诗词智能问答系统 古诗词数据分析 古诗词情感分析模型 自然语言处理NLP 机器学习 深度学习

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

以下是一篇关于《Django+Vue.js中华古诗词知识图谱可视化与古诗词智能问答系统》的开题报告框架及内容示例,供参考:


开题报告

题目:Django+Vue.js中华古诗词知识图谱可视化与古诗词智能问答系统

一、研究背景与意义

  1. 背景
    • 文化价值:中华古诗词是中华文化的重要载体,蕴含丰富的历史、哲学与美学价值。然而,传统诗词学习方式(如教材、文献)存在信息碎片化、检索效率低等问题。
    • 技术趋势:知识图谱(Knowledge Graph)通过结构化数据构建语义网络,能够高效整合诗词、作者、朝代等关联信息;可视化技术可直观展示知识关系;智能问答系统(QA System)可实现自然语言交互,提升用户体验。
    • 技术选型:Django(后端框架)提供高效的数据库管理与API开发能力;Vue.js(前端框架)支持动态数据绑定与组件化开发,适合构建交互式可视化界面。
  2. 意义
    • 学术价值:探索知识图谱在传统文化领域的应用模式,推动跨学科研究(计算机+文学)。
    • 应用价值:构建一个集诗词检索、知识关联分析、智能问答于一体的平台,辅助用户高效学习古诗词,传承中华文化。

二、国内外研究现状

  1. 知识图谱在文化领域的应用
    • 国外研究:如Google Knowledge Graph、DBpedia等已实现大规模通用知识整合,但针对垂直领域(如古诗词)的深度挖掘较少。
    • 国内研究:部分学者尝试构建诗词知识图谱(如“唐诗宋词图谱”),但多停留于静态展示,缺乏动态交互与问答功能。
  2. 智能问答系统研究
    • 传统问答系统:基于关键词匹配或规则引擎,难以处理语义复杂性。
    • 深度学习驱动:BERT、GPT等模型在开放域问答中表现优异,但需结合领域知识优化(如诗词语义理解)。
  3. 技术栈相关研究
    • Django在Web开发中广泛应用,支持快速构建RESTful API;Vue.js在数据可视化(如ECharts集成)与响应式界面设计中优势显著。

三、研究目标与内容

  1. 研究目标
    • 构建中华古诗词知识图谱,实现多维度数据关联(诗词-作者-朝代-意象等)。
    • 开发基于Django+Vue.js的可视化平台,支持知识图谱的交互式探索。
    • 设计智能问答模块,支持自然语言查询(如“李白描写月亮的诗有哪些?”)。
  2. 研究内容
    • 数据层
      • 数据采集:从公开数据集(如“全唐诗”“全宋词”)及网络爬虫获取诗词文本与元数据。
      • 知识抽取:使用NLP技术(命名实体识别、关系抽取)构建结构化知识图谱(Neo4j存储)。
    • 后端层
      • 基于Django开发RESTful API,实现知识图谱查询、问答逻辑处理。
      • 集成NLP模型(如BERT+CRF)提升问答语义理解能力。
    • 前端层
      • 使用Vue.js构建响应式界面,集成ECharts/D3.js实现知识图谱可视化(力导向图、时间轴等)。
      • 设计交互功能:节点点击展开、路径搜索、关键词高亮等。
    • 问答模块
      • 规则引擎:基于关键词与图谱路径匹配的简单问答。
      • 深度学习模型:微调BERT模型处理复杂语义问题(如诗词意境分析)。

四、研究方法与技术路线

  1. 研究方法
    • 文献分析法:梳理知识图谱、智能问答相关技术文献。
    • 实验法:对比不同NLP模型在诗词问答中的效果。
    • 系统开发法:采用前后端分离架构,分模块实现功能。
  2. 技术路线
     

    mermaid

    graph TD
    A[数据采集与清洗] --> B[知识抽取与图谱构建]
    B --> C[Neo4j图数据库存储]
    C --> D[Django后端API开发]
    D --> E[Vue.js前端可视化]
    D --> F[智能问答模块]
    E --> G[用户交互界面]
    F --> G

五、预期成果与创新点

  1. 预期成果
    • 完成中华古诗词知识图谱构建(含10,000+诗词节点)。
    • 实现可视化平台,支持图谱探索与智能问答功能。
    • 发表1篇核心期刊论文或申请1项软件著作权。
  2. 创新点
    • 跨学科融合:将知识图谱与古诗词研究结合,填补垂直领域应用空白。
    • 混合问答模式:融合规则引擎与深度学习模型,提升问答准确率与鲁棒性。
    • 交互式可视化:通过动态图谱展示诗词历史演变与意象关联,增强用户体验。

六、进度安排

阶段时间任务
11-2月文献调研与需求分析
23-4月数据采集与知识图谱构建
35-6月后端API开发与问答模型训练
47-8月前端可视化与系统集成
59-10月系统测试与优化
611-12月论文撰写与答辩准备

七、参考文献

[1] 王伟等. 知识图谱构建与应用综述[J]. 计算机学报, 2022.
[2] Devlin J, et al. BERT: Pre-training of Deep Bidirectional Transformers[C]. NAACL, 2019.
[3] Django官方文档. https://docs.djangoproject.com/
[4] Vue.js官方文档. https://vuejs.org/
[5] 李明等. 基于Neo4j的唐诗知识图谱构建研究[J]. 图书馆学研究, 2021.

八、指导教师意见

(待填写)


备注:可根据实际研究方向调整技术细节(如替换NLP模型或可视化库),并补充具体数据集来源与实验设计。

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站计算机毕业设计大学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值