对立问题思考,二分法逼近最大值的最小值

本文介绍了一种算法,用于解决将一组数分成指定数量的连续子段时,如何找到这些子段和的最大值最小的情况。通过二分查找逼近最优解,实现高效求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

按顺序给出 n 个数,将 n 个数分为 m 段,使每段的和最大值最小,求改值最小为多少。

思考当前问题的对立问题:
对于一个值 max_value,判断是否可以将序列切分成连续的 m 段,并且使得每个子段和不大于 max_value 。

    定义变量 s,作为当前扩展子段的起始点,初始 s = 0。
    从 s 出发不断向右扫描,直到 t 位置,满足 sum( a[s…t] ) > max_value, 则将 s[ s, t-1 ] 作为一个子段。  

然后采用二分逼近的方法获取最小的最大值

 注意:二分逼近 这里只适用于离散的求取最大值


import java.util.Scanner;

public class Main {
    public static void main(String[] args){
        Scanner scanner=new Scanner(System.in);
        int sum=0;
        int[] arr=new int[10000];
        int i=0;
        int hour=0;
        String s= scanner.nextLine();
        String[] split = s.split(",");
        for (i=0;i<split.length-1;i++){
            arr[i]=Integer.parseInt(split[i]);
            sum+=arr[i];
        }
        String[] s1 = split[split.length-1].split(" ");
        arr[i]= Integer.parseInt(s1[0]);
        hour=Integer.parseInt(s1[1]);
        sum+=arr[i];

        int max_min_size = binary_search(arr, arr.length, hour, sum);

        System.out.println(max_min_size);
    }

    /**
     * 二分法极限逼近
     * @param a
     * @param n
     * @param m
     * @param sum 数总和
     * @return
     */
    public static int binary_search(int a[],int n,int m,int sum){
        int low=0,high=sum,mid;
        while (high>low){
            mid=(low+high)/2;
            if (check(a, n, m,mid)){
                high=mid;
            }else {
                low=mid+1;
            }
        }
        return high;
    }

    /**
     * 最大值 把数组n个数分成m段
     * @param arr
     * @param n n个数
     * @param m 分成m段
     * @param max_val
     * @return
     */
     public static boolean check(int[] arr,int n,int m,int max_val){
        int cnt=0,sum=0;
        for (int i=0;i<n;i++){
            if (arr[i]>max_val){
                return false;
            }
            sum+=arr[i];
            if (sum>max_val){
                cnt++;
                sum=arr[i];
            }
        }
        cnt++;
        return cnt<=m;
     }
}

### 使用二分法查找数组中最大值最小值 对于无序数组,可以利用二分法的思想通过递归方式高效地找到最大值最小值。这种方基于分治策略,在每次迭代过程中将问题规模减半。 #### 方概述 该算的核心在于将待处理区间不断分割成两部分,分别计算每部分的最大值最小值后再比较得出整体的最大值最小值。具体过程如下: - 如果当前子序列长度为1,则此元素既是最大也是最小; - 若长度为2,则直接对比这两个数确定最大值最小值; - 对于更长的序列,取中间位置作为划分点,递归调用函数处理左右两侧的数据,并最终汇总结果得到整个区间的最值[^3]。 #### C++ 实现示例 下面给出一段完整的C++代码用于演示上述逻辑: ```cpp #include <iostream> using namespace std; // 定义一个辅助函数来执行实际的工作 void maxMin(int array[], int low, int high, int& minVal, int& maxVal){ // 当只有一个元素的情况 if (low == high) { minVal = maxVal = array[low]; return; } // 只有两个元素的情形 if ((high-low)==1) { if(array[low]>array[high]){ minVal=array[high]; maxVal=array[low]; }else{ minVal=array[low]; maxVal=array[high]; } return; } // 处理多于两个元素的一般情况 int mid = (low + high)/2; int local_min_left,local_max_left; int local_min_right,local_max_right; // 左边一半范围内的最大/最小值 maxMin(array, low, mid, local_min_left, local_max_left); // 右边一半范围内最大/最小值 maxMin(array, mid+1, high, local_min_right, local_max_right); // 合并两边的结果获得全局最大/最小值 minVal = (local_min_left<local_min_right)?local_min_left:local_min_right; maxVal = (local_max_left>local_max_right)?local_max_left:local_max_right; } int main(){ int data[] = {100, 2, 3,-2,-8,-6,-9,-10,50,2,-1}; int n=sizeof(data)/sizeof(*data); int minimum,maximum; maxMin(data,0,n-1,minimum,maximum); cout << "The smallest element is:"<< minimum<< endl; cout << "The largest element is:" << maximum<<endl; } ``` 这段程序展示了如何应用二分法原理在一个未排序的整型数组`data[]`上寻找其内部存在的最大值以及最小值。注意这里采用了递归来简化编程难度的同时也提高了可读性和维护性[^2]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值