矩阵快速幂模板

先实现一次矩阵相乘O(N^3)

代码:

struct Mat
{
    int mat[N][N];
};
Mat Multiply(Mat a, Mat b)
{
    Mat c;
    memset(c.mat, 0, sizeof(c.mat));
    for(int k = 0; k < n; ++k)
        for(int i = 0; i < n; ++i)
            if(a.mat[i][k])
                for(int j = 0; j < n; ++j)
                    if(b.mat[k][j])
                        c.mat[i][j] = (c.mat[i][j] +a.mat[i][k] * b.mat[k][j])%Mod;
    return c;
}

矩阵快速幂(mat^k),如何减少乘法运算:比如mat^11需要11次乘法,11(10)=1011(2) , 所以:mat^11=mat^8*mat^2*mat^1. 循环运算表达式mat=mat*mat, 得到mat的1,2,4,8,16……2^n次方,对应的二进制位数为1的累乘起来就行了。

Mat QuickPower(Mat a, int k)
{
    Mat c;
    memset(c.mat,0,sizeof(c.mat));
    for(int i = 0; i < n; ++i)
        c.mat[i][i]=1;
    for(; k; k >>= 1)
    {
        if(k&1) c = Multiply(c,a);
        a = Multiply(a,a);
    }
    return c;
}

附:
快速幂模板,下面是计算(a^n)%k的一个模板。

int quickpow(int a,int n,int k)
{
    int b = 1;
    while (n)
    {
          if (n & 1)
             b = (b*a)%k;
          n = n >> 1 ;
          a = (a*a)%k;
    }
    return b;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值