工作中有张表,5860多万数据。
使用count(1)用了51秒。
field1为串类型且已加索引,使用field1 =123用了94s
field1为串类型且已加索引,使用field1||‘1’='1231’用了103s
而使用field1='123’或field1 in (‘123’)则用时0.016s
因此,要根据表字段的类型去赋值,不能随意切换类型,也尽量不要去做表达式条件,等号右边可以有表达式,左侧最好不要有。
in的效率目前看和等号差不多。
查资料知:
索引利用:=始终优先走索引扫描;IN在列表值较少时也能利用索引,但值过多或子查询结果集大时可能失效。因此in在值少的时候效率等于=,多时候全表扫描。
优化器处理:IN会尝试转换为JOIN或EXISTS,若转换失败则逐条比较;=直接定位单值,执行路径更简单。
实测案例:某场景下将IN替换为EXISTS后,查询时间从11分钟降至15秒,说明IN在大数据量子查询中性能风险较高。
oracle大数据量下优化的体验
最新推荐文章于 2025-08-18 15:06:57 发布