oracle大数据量下优化的体验

工作中有张表,5860多万数据。
使用count(1)用了51秒。
field1为串类型且已加索引,使用field1 =123用了94s
field1为串类型且已加索引,使用field1||‘1’='1231’用了103s
而使用field1='123’或field1 in (‘123’)则用时0.016s
因此,要根据表字段的类型去赋值,不能随意切换类型,也尽量不要去做表达式条件,等号右边可以有表达式,左侧最好不要有。
in的效率目前看和等号差不多。
查资料知:
索引利用‌:=始终优先走索引扫描;IN在列表值较少时也能利用索引,但值过多或子查询结果集大时可能失效‌。因此in在值少的时候效率等于=,多时候全表扫描。
优化器处理‌:IN会尝试转换为JOIN或EXISTS,若转换失败则逐条比较;=直接定位单值,执行路径更简单‌。
‌实测案例‌:某场景下将IN替换为EXISTS后,查询时间从11分钟降至15秒,说明IN在大数据量子查询中性能风险较高‌。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值