分布式服务的共识协调与Raft算法实践
1. 分布式服务的问题与共识的引入
分布式服务在发展过程中会遇到诸多问题。以餐厅为例,起初只有一个炉灶和一个厨师,随着生意变好,顾客增多,厨房难以应对,后来增加了厨师和炉灶,但又出现了协调问题,导致服务混乱。分布式服务也类似,在之前的实现中,服务器之间会循环复制数据,产生无限副本,造成数据冗余。
共识算法就像是餐厅的厨师长,能让分布式服务在面对故障时就共享状态达成一致。我们将使用Raft算法进行领导者选举和复制,解决服务器间的数据复制问题。
2. Raft算法概述
Raft是一种易于理解和实现的分布式共识算法,被广泛应用于Etcd、Consul等服务中,Kafka团队也在从ZooKeeper迁移到Raft。Raft将共识分为领导者选举和日志复制两部分。
2.1 领导者选举
- 角色与机制 :Raft集群中有一个领导者和多个追随者。领导者通过发送心跳请求来维持其地位,若追随者在等待心跳时超时,就会成为候选人并发起选举。候选人先给自己投票,再向追随者请求投票,获得多数票后成为新的领导者。
- 任期机制 :每个Raft服务器都有一个任期,它是一个单调递增的整数,用于表示服务器的权威性和时效性。每次选举时,候选人的任期会增加,当选后追随者会更新任期。服务器在每个任期内只会为第一个请求投票且任期大于自己的候选人投票,这有助于防止投票分裂,确保选出最新的领导者。
- 应用场景 :在一些场景中,Raft可仅用于领导者选举。例如,在一个作业系统