(本文从 AI Agent 的技术认知逻辑出发,结合编译原理、操作系统内核、机器学习三重维度,拆解可执行格式的本质 —— 这不仅是人类理解的「二进制模板」,更是 AI Agent 可感知、可学习、可攻防的结构化语义网络)
一、AI 如何 “看” 可执行格式?—— 从「魔数识别」到「结构解析」
人类分析 ELF/PE 时,会先查魔数、数段表;AI Agent 则用机器学习构建「二进制语义模型」,把格式解析变成一场「特征提取 - 模式匹配 - 意图预测」的智能推理:
1. 魔数识别:AI 的 “二进制身份证扫描”
- 人类逻辑:魔数是
0x7F ELF
(ELF)、MZ
(PE),硬编码识别。- AI 逻辑:用对比学习训练模型,输入百万级二进制文件的前 16 字节(魔数 + 文件头片段),让模型学习 “格式家族特征”。例如:
- 训练集包含 ELF/PE/Mach-O 的合法文件 + 恶意样本的篡改魔数,模型能秒级识别魔数变种(比如恶意软件把 ELF 魔数改成
0x7E ELF
试图绕过检测)。- 甚至能发现新型格式雏形:若某未知二进制的魔数段与 ELF 有 80% 结构相似,AI 可预测其为 “类 ELF 实验格式”。
2. 段表解析:AI 的 “内存布局推理”
- 人类逻辑:读
readelf -l
看段类型、权限、偏移。- AI 逻辑:用图神经网络(GNN)建模段表关系,把每个段视为节点(含权限、大小、偏移特征),段间依赖视为边。例如:
- 训练时输入正常 ELF 的段表(.
12-13
2931
