在 AI 辅助编程工具领域,Claude Code 与 Cursor 凭借各自独特的技术路径占据重要地位。作为两款定位相近但实现方式迥异的工具,它们在架构设计、功能模块与适用场景上存在显著差异。本文将从技术底层视角展开对比分析,为开发者提供选型参考。
一、架构设计差异:独立工作台与编辑器插件的分野
Claude Code 采用独立应用架构,基于 Electron 框架构建跨平台桌面应用,核心由三大模块组成:
- 项目解析引擎:采用多线程 AST(抽象语法树)解析器,支持 Java、Python、JavaScript 等 15 种主流语言,通过预编译生成项目符号表与依赖图谱,存储于嵌入式 LevelDB 数据库。
- 可视化渲染层:基于 D3.js 实现代码关系可视化,采用力导向图(Force-Directed Graph)算法绘制文件调用关系,节点大小映射代码复杂度(基于 cyclomatic complexity 计算)。
- 协同编辑内核:集成 CRDT(无冲突复制数据类型)算法,实现多用户实时编辑冲突解决,通过 WebSocket 建立持久连接,同步频率可达 100ms / 次。
其架构优势在于全局项目视角的一致性,但带来约 80MB 的基础内存占用,首次加载 10 万行级项目需 20-30 秒预解析。
Cursor 则采用编辑器插件架构,基于 Language Server Protocol(LSP)与 VS Code/JetBrains 系列编辑器集成,核心组件包括:
- 代码生成服务:封装 GPT-4 Code 模型 API,采用 8192token 上下文窗口,支持实时增量生成(Incremental Generation)。
- 指令解析模块