Basic Sensor Calibration (1) -- 加速计传感器校准

本章简要介绍加速计(Accelerometer), 陀螺仪(Gyroscop)和地磁(Magnetic Field)传感器校准的基础知识。更复杂更精确的校准需要有专门的算法库来执行,本章不涉及。校准(Calibration)和融合(Fusion)是密不可分的,传感器器件供应商一般会提供一个算法库给手机设备厂商进行集成。

校准是通过计算来补偿由于环境因素和器件自身的因素造成的各种误差,之后得到比较接近于真实测量对象的值的过程。

移动设备坐标系
移动设备坐标系

1. 加速计校准.
加速计传感器可以检测设备在三个轴(x, y, z)上的加速度的值。测量的加速度包含物理加速度(设备本身运动速度的变化)和地球重力加速度(Gravity)。在Android Accelerometer Sensor 里,测量值反映在(x, y, z)三轴的数据上。

  • 设备自由落体时的三轴(x, y, z)标准加速度值都应该接近于0 米每平方秒(m/s^2);
  • 设备正面朝上平放在桌面,然后向右翻转左侧向下下时,x轴上的加速度值应该为正数;
  • 设备正面朝上平放在桌面静止时,z轴的加速度值应该是 +9.81 m/s^2 (=1g), 此时设备本身的运动加速度应该为 0 m/s^2 (减去重力加速度, -9.81 m/s^2);
  • 设备正面朝上平放在桌面,然后向上运动时,z轴的加速度值应该大于+9.81 m/s^2 (> 1g),此时设备本身的运动加速度应该为正数(减去重力加速度后,-9.81 m/s^2);

加速计传感器的校准包含:

  • 温度补偿 (temperature compensation)
    一般来说,温度补偿是调整由于温度变化对系统性能产生的影响进行的补偿。在传感器领域,温度变化对性能的影响是线性的(Temperature coefficient),sensor 厂商会在发布的 datasheet里说明相应的规格参数。温度补偿一般在硬件里完成。

  • 偏差校准 (bias calibration, or offset calibration)
    这里介绍一个简单的 offset 校准方法。以 z 轴为例,设备正面朝上静止放置在水平面上时,z 测量值计为Z_up; 设备正面朝下静止放置在水平面上时, z 测量值计为 Z_dwn; 理想情况下 Z_up = +9.81 m/s^2, Z_dwn = -9.81 m/s^2。当然实际上由于 offset 的存在,Z_up 和 Z_dwn都会有偏差。offset的计算公式就是:

    /* 偏差 = (向上 + 向下)/ 2 */
    Z_offset = (Z_up + Z_dwn)/2.

    /* 稍微精确一些,例如取100个Z_up, 求均值 Z_up_mean, 取100个 Z_dwn,求均值Z_dwn_mean.*/
    Z_offset = (Z_up_mean + Z_dwn_mean) / 2

这里写图片描述

下面列举一个实际的例子,设备朝上和朝下分别取100个数据并分别求平均值,代入上面的公式求出offset。然后验证,用原来的数据减去offset,得出校准后的数据。

这个简单的校准方法,在设备静态时粗略计算offset,校准后的数据比较接近理想值:

这里写图片描述

  • 尺度校准 (scale calibration)

    加速计传感器是有量程(Range)的,例如±4G, 意思是可以测量到最高4 个G的加速度。因为轴有正负,所以量程也标正负。
    测量到的三轴加速度的原始数据,放在物理寄存器中供外界读取。传感器可以决定用多少个字节表示一个轴的数据,就引入了位宽(bitwidth)的概念,比如用一个 16 比特位宽的有符号值表示x或y或z轴的数据。

/* 有符号的16比特的最大值 */
2^15 = 32768/* 最大是4G range, 测得1G时的值 */
32768 / 4 = 8192/* 理想情况下的 resolution 或称为灵敏度,即最小可测量到的加速度变化值 */
9.81 / 8192 = 0.0011975 m/s^2 每 LSB;

/* 还是以Z轴为例 Z_up 和 Z_dwn 分别代表朝上和朝下时的加速度值,
尺度误差公式 scale = 实际测量范围 / 理想测量范围 */
Z_scale = (Z_up - Z_dwn) / (9.81 * 2);

把 offset 校准和 scale 校准结合起来使用,得到一个加速计的简单校准公式:

/* 校准后数据 Z_calib, 校准前数据 Z_raw, 偏差 Z_offset, 尺度误差 Z_scale */
Z_calib = (Z_raw - Z_offset) / Z_scale; 
  • 低通滤波(Low Pass Filter)
    加速计传感器响应较慢,属于低频信号,适用于描述设备倾角,运动方向和加速度的变化。因此可以用一个低通滤波器,来排除信号突然变化导致测量异常,以获取更精确运动加速度。低通滤波在传感器融合算法用处较大,比如可以跟陀螺仪融合计算出重力加速度(Gravity)和线性加速度(Linear Acceleration),也可以通过补偿陀螺仪计算更精确的旋转矢量(Rotation Vector).

Sensor types

<think>好的,我现在需要帮助用户了解如何校准MAP-AM-265气泵的压力传感器。首先,我需要确认用户提到的设备是否存在,或者是否是某个特定品牌的产品。由于这个型号看起来比较特殊,可能不是常见的通用型号,所以可能需要先进行一些假设。 假设MAP-AM-265是一个特定型号的气泵,其压力传感器需要校准校准压力传感器通常涉及几个步骤:准备工作、连接校准设备、调整零点、调整量程、验证校准结果、记录数据等。我需要将这些步骤详细列出,并确保符合安全操作规程。 首先,用户需要准备标准压力源和校准仪器,比如数字压力校准器。这些设备需要具备更高的精度,通常比被校准传感器高3到4倍。接下来,需要断开气泵的电源,确保安全操作。然后,正确连接校准设备到压力传感器的测试端口,可能需要使用适配器或转接头。 然后是调整零点。在无压力状态下,观察传感器的输出是否为零点,如果有偏差,需要通过调节零点电位器来修正。接着,施加满量程压力,调整量程电位器,使传感器读数与标准设备一致。这个过程可能需要多次循环调整,直到零点和量程都准确。 完成调整后,需要验证多个压力点的准确性,比如25%、50%、75%的量程,确保线性度符合要求。最后,记录校准数据,并贴上校准标签,包括日期和人员信息。 同时,需要提醒用户注意安全,遵守制造商的具体指南,因为不同型号可能有不同的校准步骤或接口。如果用户手册中有特殊说明,应优先遵循。此外,校准后如果发现传感器存在漂移或非线性问题,可能需要更换传感器。 现在,我需要检查是否有遗漏的步骤或注意事项。比如,是否需要温度补偿,或者在调整过程中是否需要考虑气压波动的影响。不过,通常基本的校准流程已经涵盖主要步骤。确保用户理解每个步骤的重要性,尤其是安全操作和精确测量。 最后,生成相关问题,帮助用户进一步了解压力传感器校准的其他方面,如校准周期、故障排查、工具选择等。</think>### MAP-AM-265气泵压力传感器校准方法 校准压力传感器需遵循以下步骤,确保测量精度与设备安全[^1]: 1. **准备工作** - 关闭气泵电源并释放系统内残余压力 - 准备标准压力源(精度需高于被校传感器3-4倍)和数字校准- 确认传感器接口类型(如G1/4螺纹)并准备适配器 2. **零点校准** $$ V_{out} = V_{offset} + (P_{applied} \times S) $$ 在零压状态下: - 通过设备菜单进入校准模式(部分型号需组合按键) - 使用标准仪表验证零点输出 - 调节零点电位器使输出值=理论零点值±0.5%FS 3. **量程校准** - 施加额定压力(如10bar) - 比较传感器读数与标准仪表 - 调整量程电位器直至误差≤0.25%FS 4. **线性验证** 按25%、50%、75%、100%量程点测试,算非线性误差: $$ \delta = \frac{|P_{sensor} - P_{std}|}{P_{fullscale}} \times 100\% $$ 要求$\delta \leq 1\%$ 5. **温度补偿(可选)** 若设备工作环境温差>15℃,需在高温/低温环境下验证温漂特性 ```python # 校准数据验证示例 def validate_calibration(sensor_reading, reference_value, tolerance): error = abs(sensor_reading - reference_value) return error <= tolerance * reference_value ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值