实验设计与结果分析
1 实验目标
在计算智能与智能系统的研究中,实验设计与结果分析是至关重要的环节。本章将详细介绍一系列实验,旨在验证和评估不同算法在特定任务中的性能。具体来说,本章的实验目标包括但不限于以下几点:
- 验证所提出的算法是否能在特定应用场景中表现出优越性;
- 评估不同参数设置对算法性能的影响;
- 对比改进后的算法与现有方法的优劣;
- 探讨算法在大规模数据集上的表现。
2 实验环境
为了确保实验结果的可靠性和可复现性,我们在标准化的实验环境中进行了一系列测试。以下是实验环境的具体配置:
2.1 硬件环境
- 服务器 :Dell PowerEdge R740xd,配备双路 Intel Xeon Gold 6248R 处理器(24核,48线程),1TB DDR4 ECC 内存,4TB NVMe SSD 存储。
- GPU :NVIDIA Tesla V100,32GB HBM2 显存,用于加速深度学习任务。
2.2 软件环境
- 操作系统 :Ubuntu 20.04 LTS
- 编程语言 :Python 3.8
- 依赖库 :TensorFlow 2.5.0,PyTorch 1.9.0,Num