计量经济学中的符号体系
在计量经济学中,一套统一且标准的符号体系至关重要,它能确保研究人员之间的交流更加清晰和准确。下面将详细介绍计量经济学中常用的符号及其含义。
1. 向量和矩阵的符号表示
1.1 基本表示
向量通常用小写的粗斜体字母表示,如 (a, b, \cdots, z) ,也可以用希腊小写字母表示,如 (\alpha, \cdots, \omega) ;矩阵则用大写的粗斜体字母表示,如 (A, B, \cdots, Z) ,也可用希腊大写字母,如 (\Gamma, \Theta, \Omega) 。
对于一个 (n \times 1) 的向量 (a) 和一个 (m \times n) 的矩阵 (A) ,可以表示为:
[
a =
\begin{pmatrix}
a_1 \
a_2 \
\vdots \
a_n
\end{pmatrix}
\quad
A =
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \
a_{21} & a_{22} & \cdots & a_{2n} \
\vdots & \vdots & \ddots & \vdots \
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
]
当定义矩阵时,通常让行数 (m) 大于或等于列数 (n) 。