41、危险货物运输网络设计与逆最短路径路由问题研究

危险货物运输网络设计与逆最短路径路由问题研究

在物流运输领域,危险货物(hazmat)的运输网络设计至关重要,同时逆最短路径路由问题也在诸多实际场景中有着广泛应用。下面将详细介绍这两个问题的研究内容。

危险货物运输网络设计问题(HTNDP)

在危险货物运输中,政府希望通过禁止某些道路来降低整体风险,而运输商则会选择成本最低的路线。这就引出了 HTNDP 问题。

数学模型

该问题的混合整数规划(MILP)公式包含以下约束条件:
- $\pi_{j}^{k} - \pi_{i}^{k} \leq c_{ij}^{k} - \frac{r_{ij}^{k}}{R} + M(1 - y_{ij})$,对于所有的 $(i, j) \in T$,$k = 1, \cdots, K$。
- $\sum_{(i,j) \in A} (c_{ij}^{k} - \frac{r_{ij}^{k}}{R}) x_{ij}^{k} \leq \pi_{d_{k}}^{k} - \pi_{o_{k}}^{k}$,对于所有的 $k = 1, \cdots, K$。
- $0 \leq x_{ij}^{k} \leq 1$,对于所有的 $(i, j) \in A$,$k = 1, \cdots, K$。
- $y_{ij} \in {0, 1}$,对于所有的 $(i, j) \in T$。

虽然由于约束条件(14) - (15),约束矩阵不再是全幺模的,但有一个重要性质:即使变量 $x_{ij}^{k}$ 不被约束为整数,HTNDP 的混合整数规划公式(11) - (18)也存在一个最优解,使得所有的 $x_{ij}^{k}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值