在机器人导航与 SLAM(同步定位与地图构建)领域,里程计与惯导(IMU)的数据融合是提升定位精度的关键技术。除了经典的卡尔曼滤波算法(KF)外,以下几类算法也被广泛应用于该场景,它们在不同应用场景下各有优势:
一、扩展卡尔曼滤波(EKF,Extended Kalman Filter)
核心原理
- 针对非线性系统,将状态转移方程和观测方程在当前状态点进行泰勒一阶展开(线性化),再套用卡尔曼滤波框架。
- 适用场景:里程计(如轮式里程计、视觉里程计)与 IMU 的非线性融合(如机器人旋转运动)。
优势与局限
- 优势:计算效率高,适用于实时性要求强的场景(如移动机器人)。
- 局限:线性化过程可能引入误差,对强非线性系统收敛性较差。
二、无迹卡尔曼滤波(UKF,Unscented Kalman Filter)
核心原理
- 采用 “无迹变换”(Unscented Transform),通过选取一组采样点(Sigma 点)直接传递概率分布,避免 EKF 的线性化误差。
- 数学逻辑:用确定性采样点近似状态分布,更准确处理非线性函数的均值和协方差。
应用案例
- 视觉里程计(VO)与 IMU 融合:处理相机投影模型的非线性(如透视变换)。
- 无人机定位:融合 GPS、视觉里程计与 IMU,提升动态场景下的稳定性。