除了卡尔曼滤波算法,还有哪些算法可以用来做里程计与惯导的数据融合

在机器人导航与 SLAM(同步定位与地图构建)领域,里程计与惯导(IMU)的数据融合是提升定位精度的关键技术。除了经典的卡尔曼滤波算法(KF)外,以下几类算法也被广泛应用于该场景,它们在不同应用场景下各有优势:

一、扩展卡尔曼滤波(EKF,Extended Kalman Filter)

核心原理
  • 针对非线性系统,将状态转移方程和观测方程在当前状态点进行泰勒一阶展开(线性化),再套用卡尔曼滤波框架。
  • 适用场景:里程计(如轮式里程计、视觉里程计)与 IMU 的非线性融合(如机器人旋转运动)。
优势与局限
  • 优势:计算效率高,适用于实时性要求强的场景(如移动机器人)。
  • 局限:线性化过程可能引入误差,对强非线性系统收敛性较差。

二、无迹卡尔曼滤波(UKF,Unscented Kalman Filter)

核心原理
  • 采用 “无迹变换”(Unscented Transform),通过选取一组采样点(Sigma 点)直接传递概率分布,避免 EKF 的线性化误差。
  • 数学逻辑:用确定性采样点近似状态分布,更准确处理非线性函数的均值和协方差。
应用案例
  • 视觉里程计(VO)与 IMU 融合:处理相机投影模型的非线性(如透视变换)。
  • 无人机定位:融合 GPS、视觉里程计与 IMU,提升动态场景下的稳定性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

start_up_go

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值