使用Optimum的BetterTransformer为常见的transformer结构模型进行推理加速

概述

🤗 Optimum 提供了一个名为 BetterTransformer 的 API,这是标准 PyTorch Transformer API 的快速路径,能够通过稀疏性和融合内核(如 Flash Attention)在 CPU 和 GPU 上实现有趣的加速。目前,BetterTransformer 支持来自原生 nn.TransformerEncoderLayer 的快速路径,以及 torch.nn.functional.scaled_dot_product_attention 中的 Flash Attention 和 Memory-Efficient Attention。

快速入门

自 1.13 版本以来,PyTorch 发布 了其标准 Transformer API 的稳定版本,为基于 Transformer 的模型提供了开箱即用的性能改进。你可以在大多数消费类设备上获得有趣的加速,包括 CPU、旧版和新版的 NVIDIA GPU。现在,你可以在 🤗 Optimum 中与 Transformers 一起使用这个功能,并将其用于 Hugging Face 生态系统中的主要模型。

在 2.0 版本中,PyTorch 将本地缩放点积注意力运算符 (SDPA) 包含在 torch.nn.functional 中。这个函数包含了几种实现方式,可以根据输入和使用的硬件进行应用。有关更多信息,请参见官方文档此博客文章中的基准测试。

我们在 🤗 Optimum 中提供了这些优化的开箱即用集成,因此你可以转换任何支持的 🤗 Transformers 模型,使其在相关情况下使用优化路径和 scaled_dot_product_attention 函数。

PyTorch 原生的 scaled_dot_product_attention 正在慢慢成为默认值,并在 🤗 Transformers 中集成。对于在 Transformers 中支持 SDPA 的模型,我们不再推荐使用 BetterTransformer,而是建议直接使用 Transformers 和 PyTorch 的最新版本进行注意力优化(Flash Attention 和 memory-efficient attention),通过 SDPA 实现。

PyTorch 原生的 scaled_dot_product_attention 运算符只能在未提供 attention_mask 的情况下调度到 Flash Attention。

因此,默认情况下,在训练模式中,BetterTransformer 集成 放弃了 mask 支持,仅可用于不需要批量训练填充 mask 的训练。例如,这种情况适用于掩码语言模型或因果语言模型。BetterTransformer 不适用于需要填充 mask 任务的模型微调。

在推理模式中,为了保证正确性,保留填充 mask,因此仅在 batch size = 1 的情况下可以预期加速。

<think>好的,我现在需要帮助用户解决将DeepSeek 32B模型以4-bit量化部署到RTX 3080 20GB显卡上的问题。首先,我需要理清用户的需求和现有的资源限制。 首先,用户提到的DeepSeek 32B模型,参数规模是32B,也就是320亿参数。如果使用4-bit量化,每个参数占用0.5字节,那么理论上的模型参数大小应该是320亿 * 0.5字节 = 16GB左右。不过,用户提供的引用[1]中提到,使用FP8(e4m3)时,模型文件总计约642G,而FP3精度加载需要642GB显存。这可能有些矛盾,但可能引用中的模型是更大的版本,比如163个分片的情况。不过用户现在的问题是关于32B模型,所以需要重新计算。 对于4-bit量化,参数存储需求确实是每个参数0.5字节,所以32B参数需要16GB。但实际部署时,除了模型参数,还需要考虑推理时的中间激活值、KV缓存等。引用[1]提到KV-Cache和激活值可能占30%左右,如果输出是长文本,这部分的开销会更大。RTX 3080的显存是20GB,所以参数16GB加上其他开销,可能接近或超过显存容量。 接下来,我需要考虑可能的解决方案。首先,使用量化库,比如bitsandbytes,它支持4-bit量化,并且可以与Hugging Face的transformers库集成。用户需要加载模型时应用4-bit配置,例如使用load_in_4bit=True参数。此外,可能需要调整内存映射和分页注意力机制来减少显存占用。 另外,模型分片可能也是一个关键点。如果单个GPU显存不足,可以考虑模型并行,将模型的不同层分配到不同的GPU上。但用户可能只有一张RTX 3080,所以可能需要使用其他技术,比如卸载(offloading)部分计算到CPU,但这会影响推理速度。或者使用更高效的内存管理策略,比如PyTorch的激活检查点(activation checkpointing),用计算换内存。 用户提到的引用[2]中提供了使用ModelScope下载模型的代码示例,这可能意味着用户需要先下载模型,然后进行量化处理。因此,步骤可能包括:下载模型、应用4-bit量化、配置推理参数以减少显存占用。 还需要注意模型是否支持4-bit量化。例如,一些模型结构可能需要特定的调整才能有效量化。此外,量化可能会影响模型精度,需要测试生成效果是否符合预期。 可能的步骤总结如下: 1. 使用bitsandbytes和transformers库加载4-bit量化模型。 2. 调整加载配置,如device_map="auto"让库自动分配资源,或者手动设置。 3. 处理显存不足的问题,可能需要启用内存优化选项,如memory_efficient_attention或使用FlashAttention。 4. 测试推理过程中的显存使用情况,如果仍然不足,可能需要启用模型卸载或减少批处理大小。 另外,RTX 3080的20GB显存可能勉强够用,但需要非常精细的优化。例如,使用PagedAttention(分页注意力)来管理KV缓存,这可以引用[1]中提到的方法。同时,检查是否有其他内存占用因素,比如框架本身的开销,或者数据预处理的部分是否占用过多显存。 可能遇到的问题包括量化后的模型无法正确加载,或者推理速度过慢。这时候可能需要调整量化配置,或者选择不同的量化方法(如GPTQ)。同时,确保CUDA版本、PyTorch版本与bitsandbytes兼容。 最后,用户可能需要实际测试并监控显存使用情况,使用如nvidia-smi或Nvidia Nsight工具来分析显存占用,找出瓶颈所在,并进一步优化。</think>将DeepSeek 32B模型通过4-bit量化部署到RTX 3080 20GB显卡需解决显存限制和量化兼容性问题,以下是具体步骤和注意事项: --- ### **1. 量化显存需求验证** - **参数计算**:32B参数采用4-bit量化后需$32 \times 10^9 \times 0.5\ \text{bytes} = 16\ \text{GB}$存储空间[^1] - **附加开销**:KV-Cache和激活值预计占30%以上(约$16 \times 0.3 = 4.8\ \text{GB}$),总需求接近$20.8\ \text{GB}$,接近显卡极限 --- ### **2. 部署步骤** #### **2.1 下载模型** 使用ModelScope工具下载模型并指定分片格式: ```python from modelscope import snapshot_download snapshot_download('deepseek-ai/DeepSeek-R1-Distill-Qwen-32B', local_dir='deepseek-32B-4bit', revision='quant-4bit') # 假设存在量化版本分支[^2] ``` #### **2.2 量化加载配置** 通过`bitsandbytes`库实现4-bit加载: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained( "deepseek-32B-4bit", device_map="auto", load_in_4bit=True, quantization_config={ "bnb_4bit_compute_dtype": torch.float16, "bnb_4bit_use_double_quant": True # 二次量化进一步压缩 } ) tokenizer = AutoTokenizer.from_pretrained("deepseek-32B-4bit") ``` #### **2.3 显存优化技巧** - **分页注意力**:启用`PagedAttention`管理KV-Cache ```python model.generation_config.use_cache = True model.generation_config.max_memory = 0.8 # 限制显存占用比例 ``` - **激活值压缩**: ```python from optimum.bettertransformer import BetterTransformer model = BetterTransformer.transform(model) # 使用内存优化注意力机制 ``` --- ### **3. 部署验证** #### **3.1 显存监控** 运行推理使用`nvidia-smi -l 1`监控显存占用,若超出限制: - 降低`max_new_tokens`(如从1024改为512) - 设置`batch_size=1` #### **3.2 精度测试** 对比量化前后生成质量: ```python input_text = "解释量子纠缠原理" output = model.generate(tokenizer(input_text, return_tensors="pt").input_ids.to("cuda"), max_length=200) print(tokenizer.decode(output[0])) ``` --- ### **4. 备选方案** 若仍显存不足: 1. **模型切割**:使用`accelerate`库手动分配层到CPU/GPU 2. **梯度卸载**:启用`--offload_param=disk`(但会显著降低推理速度) ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值