机器学习:决策树(下)

本文详细介绍了CART算法在决策树中的应用,包括回归树和分类树的生成过程。CART算法通过平方误差最小化准则构建回归树,基尼指数最小化准则构建分类树。此外,还探讨了决策树的剪枝策略,以降低过拟合风险,提高模型泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

决策树(下)

CART算法,用于分类、回归

一、概述

整个决策树模型生成由:特征选择、决策树生成、剪枝,三步完成。

CART决策树是二叉树。

CART算法由以下两步组成:

(1)决策树生成:基于训练数据集生成决策树,生成的决策树要尽量大;

(2)决策树剪枝:用验证数据集对已生成的树进行剪枝并选择最优子树,这时用损 失函数最小作为剪枝的标准。

决策树的生成就是递归地构建二叉决策树的过程。对回归树用平方误差最小化准则, 对分类树用基尼指数(Gini index)最小化准则,进行特征选择,生成二叉树。

(1)回归树:

生成:

对训练集中的每个数据作为切分点,以下面公式计算一次损失,找到损失最小的点作为切分点。如此循环直到满足要求。

对切分后的单元的值设置为单元内所有数据点的平均值。 

 (2)分类树:

遍历训练集数据中的所有输入数据的特征和取值,将其作为分隔条件分成两类D1和D2。计算对应特征取值下的条件基尼指数,取所有基尼指数最小的特征值作为分隔条件对数据集进行分类,如此循环直到满足条件。

p为特征取对应值得概率。将所有不满足条件的数据都算为另一个类概率为1-p 

二、主要内容<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

stephon_100

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值