线性表
1.顺序表
线性表是一种常用的数据结构,其中的每一个元素(结点)都有唯一的前驱和唯一的后续。当然,第一个元素只有后续,最后一个元素只有前驱。
线性表一般分为“顺序表”和“链表”。
顺序表可以简单理解成前面学过的数组。它是一种逻辑上和物理上都是有序的、连续存储的静态结构。
顺序存储结构的优点:
A、无需为表示结点间的逻辑关系而增加额外的存储空间;
B、可方便地随机存取表中的任一元素。
顺序存储结构的缺点:
A、插入或删除平均需要移动一半的结点;
B、顺序表要求占用连续的存储空间。
2.链表
链表是一种物理上不连续存储的动态结构,数据之间的逻辑顺序是通过链表中的指针链接关系实现的。
链表存储结构的优点:
A、链表插入或删除不需要移动结点;
B、链表不要求连续的存储空间。
链表存储结构的缺点:
A、需要为了表示结点间的逻辑关系增加指针域;
B、查询链表中的元素的时间复杂度是O(n)。
链表分为:单向链表/线性链表、双向链表、循环链表
队列
队列是限定在一端进行插入,另一端进行删除的特殊线性表。就像排队买东西,排在前面的人买完东西后离开队伍(删除),而后来的人总是排在队伍末尾(插入)。通常把队列的删除和插入分别称为出队和入队。允许出队的一端称为队头,允许入队的一端称为队尾。所有需要进队的数据项,只能从队尾进入,队列中的数据项只能从队头离去。由于总是先入队的元素先出队(先排队的人先买完东西),这种表也称为先进先出(FIFO)表。
队列可以用数组 Q[m+1] 来存储,数组的上界 m 即是队列所容许的最大容量。在队列的运算中需设两个指针:
- head:队头指针,指向实际队头元素的前一个位置
- tail:队尾指针,指向实际队尾元素所在的位置
一般情况下,两个指针的初值设为 0,这时队列为空,没有元素。图 1(a) 画出了一个由 6 个元素构成的队列,数组定义 Q[11]。
Q(i) i=3, 4, 5, 6, 7, 8 头指针 head=2,尾指针 tail=8。
队列中拥有的元素个数为:L=tail-head 现要让排头的元素出队,则需将头指针加 1,即 head++。这时头指针向上移动一个位置,指向 Q(3),表示 Q(3) 已出队。见图 1(b)。
如果想让一个新元素入队,则需尾指针向上移动一个位置。即 tail++这时 Q(9) 入队,见图 1(c)。
当队尾已经处理在最上面时,即 tail=10,见图 1(d),如果还要执行入队操作,则要发生“上溢”,但实际上队列中还有三个空位置,所以这种溢出称为“假溢出”。
图1
克服假溢出的方法有两种。一种是将队列中的所有元素均向低地址区移动,显然这种方法是很浪费时间的;另一种方法是将数组存储区看成是一个首尾相接的环形区域。当存放到 n 地址后,下一个地址就“翻转”为 1。在结构上采用这种技巧来存储的队列称为循环队列,见图 2。
图2
循环队的入队算法如下:
- 若 tail=n+1,则 tail=1;
- 若 head=tail 尾指针与头指针重合了,表示元素已装满队列,则作上溢出错处理;
- 否则,Q(tail)=x,结束(x 为新入队元素)。