多叉树题目:N 叉树的最大深度

题目

标题和出处

标题:N 叉树的最大深度

出处:559. N 叉树的最大深度

难度

3 级

题目描述

要求

给定一个 N 叉树,返回其最大深度。

最大深度是从根结点到最远叶结点的最长路径上的结点数。

N 叉树在输入中按层序遍历序列化表示,每组子结点由空值 null \texttt{null} null 分隔(请参见示例)。

示例

示例 1:

示例 1

输入: root   =   [1,null,3,2,4,null,5,6] \texttt{root = [1,null,3,2,4,null,5,6]} root = [1,null,3,2,4,null,5,6]
输出: 3 \texttt{3} 3

示例 2:

示例 2

输入: root   =   [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14] \texttt{root = [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14]} root = [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14]
输出: 5 \texttt{5} 5

数据范围

  • 树中结点数目在范围 [0,   10 4 ] \texttt{[0, 10}^\texttt{4}\texttt{]} [0, 104]
  • N 叉树的高度小于或等于 1000 \texttt{1000} 1000

解法一

思路和算法

如果 N 叉树为空,则深度为 0 0 0。对于非空 N 叉树,首先计算每个子树的最大深度,子树最大深度的最大值加 1 1 1 即为 N 叉树的最大深度,每个子树的最大深度可以使用同样的方式计算。因此可以使用深度优先搜索计算 N 叉树的最大深度。

计算 N 叉树的最大深度的过程是一个递归的过程,递归的终止条件是 N 叉树为空,此时 N 叉树的最大深度为 0 0 0。对于非空 N 叉树,首先递归地计算每个子树的最大深度,然后将子树最大深度的最大值加 1 1 1 即为 N 叉树的最大深度。

代码

class Solution {
    public int maxDepth(Node root) {
        if (root == null) {
            return 0;
        }
        int childDepth = 0;
        List<Node> children = root.children;
        for (Node child : children) {
            childDepth = Math.max(childDepth, maxDepth(child));
        }
        return childDepth + 1;
    }
}

复杂度分析

  • 时间复杂度: O ( m ) O(m) O(m),其中 m m m 是 N 叉树的结点数。每个结点都被访问一次。

  • 空间复杂度: O ( m ) O(m) O(m),其中 m m m 是 N 叉树的结点数。空间复杂度主要是递归调用的栈空间,取决于 N 叉树的高度,最坏情况下 N 叉树的高度是 O ( m ) O(m) O(m)

解法二

思路和算法

也可以使用广度优先搜索计算 N 叉树的最大深度。

广度优先搜索需要使用队列存储待访问的结点,初始时将根结点入队列。最简单的广度优先搜索的做法是,每次将一个结点出队列,然后将该结点的子结点入队列,直到队列为空时遍历结束。

这道题需要计算 N 叉树的最大高度,因此在广度优先搜索的过程中需要维护深度的信息,实现和最简单的广度优先搜索有所不同。为了维护深度信息,需要确保每一轮访问的结点为同一层的全部结点。

初始时,队列内只有根结点,是同一层的全部结点。每一轮访问结点之前需要首先得到队列内的元素个数,此时队列内的元素为同一层的全部结点,然后访问这些结点,并将这些结点的子结点入队列。一轮访问结束之后,当前层的全部结点都已经出队列并被访问,此时队列内的元素为下一层的全部结点,下一轮访问时即可访问下一层的全部结点。使用上述做法,可以确保每一轮访问的结点为同一层的全部结点。

在确保每一轮访问的结点为同一层的全部结点的情况之下,根据访问的总轮数即可得到 N 叉树的最大深度,其中根结点的深度为 1 1 1

代码

class Solution {
    public int maxDepth(Node root) {
        if (root == null) {
            return 0;
        }
        int depth = 0;
        Queue<Node> queue = new ArrayDeque<Node>();
        queue.offer(root);
        while (!queue.isEmpty()) {
            depth++;
            int size = queue.size();
            for (int i = 0; i < size; i++) {
                Node node = queue.poll();
                List<Node> children = node.children;
                for (Node child : children) {
                    queue.offer(child);
                }
            }
        }
        return depth;
    }
}

复杂度分析

  • 时间复杂度: O ( m ) O(m) O(m),其中 m m m 是 N 叉树的结点数。每个结点都被访问一次。

  • 空间复杂度: O ( m ) O(m) O(m),其中 m m m 是 N 叉树的结点数。空间复杂度主要是队列空间,队列内元素个数不超过 n n n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

伟大的车尔尼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值