Python使用历史数据模拟法计算投资组合VaR(数据来源为Tushare)

本文展示了如何用Python和Tushare库获取股票历史数据,计算投资组合的收益率,进而运用历史数据模拟法计算99%置信度下,持有5天的VaR。代码详细解释了数据获取、处理和VaR计算过程。

Python如何使用历史数据模拟法计算投资组合VaR?(数据来源为Tushare)

本文数据可以点赞关注私信我获取!

VaR(Value at Risk)是一种常用的风险管理指标,用于衡量投资组合在特定时间内的最大可能损失。历史数据模拟法是一种计算VaR的方法,本文将介绍如何使用Tushare数据库获取“中国工商银行”和“兴业银行”2022年10月1日至2023年3月31日期间每个交易日的收盘价格数据,假设两个股票的投资额分别是3/4和1/4,如果目前两种股票的市值共计50万元人民币,置信度为99%,利用历史数据模拟法计算该投资组合持有期为5天的VaR。

步骤1:获取数据

首先,需要获取股票数据。我们以中国工商银行和兴业银行为例,获取它们在2022年10月1日至2023年3月31日期间每个交易日的收盘价格数据。代码如下:

import pandas as pd
import numpy as np
import tushare as ts
from scipy.stats import norm

# Tushare设置
pro = ts.pro_api('你的token') #你的token

start_date = '20221001' #起始日期
end_date = '20230331' #结束日期

code_list = ['601398.SH','601166.SH'] #你需要的股票代码,上海的是.SH,深圳的是.SZ

for i in code_list: #遍历list
    df = pro.daily(ts_code=i, start_date=start_date, end_date=end_date) #tushare获取股票日度信息
    df = df[['ts_code','trade_date','close']]  #只保留需要的数据
    df.to_csv(f'{
     
     i}.csv',encoding='gbk')  #导出为csv文件

以上代码中,我们使用了Tushare获取股票数据,并将数据导出为csv文件。

步骤2:处理数据

获取数据后,需要对数据进行处理。首先,我们需要将数据框中的日期列转换为日期格式,并将数据框中的收盘价列转换为浮点数。代码如下:

# 读取数据文件
df1 = pd.read_csv('601398.SH.csv')  #工商银行
df2 = pd.read_csv(
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

strangequark

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值