equine在神经网络中建立量化不确定性

​一、软件介绍

文末提供程序和源码下载

众所周知,用于监督标记问题的深度神经网络 (DNN) 可以在各种学习任务中产生准确的结果。但是,当准确性是唯一目标时,DNN 经常会做出过于自信的预测,并且无论测试数据是否属于任何已知标签,它们也总是进行标签预测。

EQUINE was created to simplify two kinds of uncertainty quantification for supervised labeling problems:
EQUINE 的创建是为了简化监督标记问题的两种不确定性量化:

  1. Calibrated probabilities for each predicted label
    每个预测标签的校准概率
  2. An in-distribution score, indicating whether any of the model's known labels should be trusted.
    分布内分数,指示是否应信任模型的任何已知标签。

二、Installation 安装

Users are recommended to install a virtual environment such as Anaconda, as is also recommended in the pytorch installation. EQUINE has relatively few dependencies beyond torch.
建议用户安装虚拟环境,例如 Anaconda,pytorch 安装中也建议安装。EQUINE 除了 torch 之外的依赖项相对较少。

pip install equine

Design 设计

EQUINE extends pytorch's nn.Module interface using a predict method that returns both the class predictions and the extra OOD scores.
EQUINE 使用一种 predict 返回类预测和额外 OOD 分数的方法扩展了 nn.Module pytorch 的接口。

三、软件下载

迅雷云盘

本文信息来源于GitHub作者地址:https://github.com/mit-ll-responsible-ai/equine

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值