量子计算与量子思维:从时空纠缠到瞬时算法探索
1. 时空纠缠的几何视角
时空纠缠可以从几何角度来理解。通过惠勒的量子泡沫概念,结合量子全息原理(QHP),我们发现第n个空间切片上度规的离散量子涨落具有量子引力能量,其能谱是离散的。这种量子引力能量“借用”了真空量子涨落的能量,也就是宇宙常数的能量,并且能量平衡保证了量子信息的守恒。当量子引力能量的某种表达式与OP的能量相等时,就会导致纠缠的发生。
在这种几何版本中,发生纠缠的是时空本身。由于量子全息原理,第n个切片的普朗克像素会与第n - 1个切片的一个像素发生纠缠。这些纠缠的像素实际上通过虚拟虫洞相互关联,虚拟虫洞是普朗克尺度上度规的最大量子涨落。这种时空纠缠的两种等价观点与ER - EPR猜想非常契合。
2. 元纠缠的逻辑架构
量子时空表现得像一台量子计算机,但处于不同的逻辑层面。物理量子计算机使用量子逻辑语言,而纠缠的时空使用量子元语言(QML),它将量子计算机的逻辑语言作为量子对象语言(QOL)进行控制,且QML无法赋予量子物理机器。
纠缠的量子时空是“空”的,不能支持像CNOT这样的物理量子逻辑门,但它具有QML,可通过两个元规则、“纠缠”(ENT)定理、“ teleportation”(TEL)元定理以及两个新的结构规则(Hadamard(H)规则和CNOT规则)反映到量子网络的QOL中。
元规则属于元逻辑领域,描述其他规则的使用方式,不能赋予机器。目前在相继式演算中已知的元规则只有切割规则和EPR规则。弱(子结构)逻辑,如线性逻辑和基本逻辑,更适合计算机科学,因为它们的弱结构为新的连接词、元规则和新的结构规则提供了更多空间。
基本逻辑