语义分割模型发展
语义分割网络模型的发展:FCN 、SegNet、Unet、DeepLab、RefineNet、PSPNet、GAN 语义分割。本文主要以FCN 为重点进行分析
一、FCN
FCN(Fully Convolutional Network) 全卷积网络,和之前常用的分类网络的不同的地方就是里面没有全连接层,也就是对一张图的所有的像素点进行分类
为什么会出现全卷积网络(FCN)?
注:图片来源与网络
上图中的第一个网络会将一张图片转换成长度为1000的输出向量,每一个数值都表示的是图像属于每一类的概率,很容易看出这张图片的分类的标签是"tabby cat"
FCN则是通过一系列的卷积和池化得到特征图,再利用反卷积(Deconvolution)对特征图进行上采样重新得到和输入图片一样大小的特征图,由于网络中没有全连接层,所以最后得到的特征图是二维的,保留了原输入图片中空间位置信息
1.FCN主要特点
• 不含全连接层(FC)的全卷积(Fully Conv)网络。从而可适应任意尺寸输入。
• 引入增大数据尺寸的反卷积(Deconv)层。能够输出精细的结果。
• 结合不同深度层结果的跳级(skip)结构。同时确保鲁棒性和精确性。
2.反卷积(Deconvolutional)
在不断生成feature map过程中所用到的池化操作会使图片大小缩小,由于最