集成学习(上)——回归模型

本文探讨集成学习在回归模型中的应用,重点讲述特征选择的重要性及模型性能度量,包括最小二乘法和极大似然估计两种参数估计方法。

集成学习(上)——回归模型


一、合适特征选择和模型性能度量指标

(1)合适的特征选择
直接使用常用的boston房价数据集:

from sklearn import datasets
boston = datasets.load_boston()     # 返回一个类似于字典的类
X = boston.data
y = boston.target
features = boston.feature_names
boston_data = pd.DataFrame(X
### 集成学习用于回归预测模型 #### 构建方法与原理 集成学习是一种通过组合多个弱学习器来创建更强的学习器的技术。对于回归问题,两种最常用的集成方法是随机森林(Random Forests)和梯度提升机(Gradient Boosting Machines, GBM)。这两种方法都旨在通过不同的机制减少单个模型的偏差和方差。 - **随机森林**:这是一种基于决策树的集成方法,它通过对原始数据集进行有放回抽样(即自助法),并在此基础上构建多棵决策树。每棵树独立做出预测,最终的结果通常是这些树预测值的平均值。这种方法不仅提高了模型的准确性,还增强了其泛化能力[^2]。 - **梯度提升机 (GBM)**:不同于随机森林中各树之间相互独立,在GBM中每一颗新的树都会尝试修正前一棵树所犯下的错误。具体来说,就是利用残差作为目标变量训练下一颗树,并逐步迭代优化整个模型的表现。为了防止过拟合,通常会在每次迭代过程中引入正则项以及控制最大深度等措施[^3]。 #### 实例展示 下面是一个简单的Python代码示例,展示了如何使用`scikit-learn`库实现上述提到的两种集成学习方法来进行房价预测: ```python from sklearn.datasets import fetch_california_housing from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.metrics import mean_squared_error # 加载加州房屋价格数据集 data = fetch_california_housing() X_train, X_test, y_train, y_test = train_test_split(data.data, data.target) # 使用随机森林进行回归预测 rf_model = RandomForestRegressor(n_estimators=100) rf_model.fit(X_train, y_train) y_pred_rf = rf_model.predict(X_test) mse_rf = mean_squared_error(y_test, y_pred_rf) print(f'RandomForest MSE: {mse_rf}') # 使用梯度提升机进行回归预测 gbm_model = GradientBoostingRegressor(n_estimators=100) gbm_model.fit(X_train, y_train) y_pred_gbm = gbm_model.predict(X_test) mse_gbm = mean_squared_error(y_test, y_pred_gbm) print(f'GradientBoosting MSE: {mse_gbm}') ``` 此段代码首先加载了一个公开可用的数据集——加利福尼亚州住房市场价值记录;接着分别应用了随机森林和支持向量机两个不同类型的集成算法完成对未知样本的价格估计任务;最后比较两者之间的均方误差(MSE),以此评估各自的效果优劣程度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值