- 回环检测基础理论
1.1 回环检测的数学本质
· 场景识别问题:
· 累积误差修正:
1.2 性能评估指标
1.3 时间一致性约束
def temporal_consistency(loop_candidates, min_interval=10):
"""时间一致性过滤"""
valid_candidates = []
for cand in loop_candidates:
# 检查时间间隔
if abs(cand.current_idx - cand.loop_idx) < min_interval:
continue
# 检查连续一致性
if check_continuous_consistency(cand, history):
valid_candidates.append(cand)
return valid_candidates
- 词袋模型(BoW)与视觉词典
2.1 BoW核心算法流程
-
特征提取:ORB/SIFT描述子
-
聚类构建词典:K-means树
-
TF-IDF加权:
-
倒排索引加速检索
2.2 视觉词典构建
class VisualVocabulary:
def __init__(self, n_clusters=1000, branch_factor=10, depth=5):
self.n_clusters = n_clusters
self.branch_factor = branch_factor
self.depth = depth
self.kdtree = None
self.idf = None
self.inverted_index = {}
def build(self, descriptors):
"""构建视觉词典"""
# K-means层级聚类
self.kdtree = cv2.flann_Index(descriptors, {
'algorithm': 'KMEANS',
'branching': self.branch_factor,
'iterations': 10,
'centers_init': 'RANDOM',
'cb_index': 0.5
})
# 计算IDF
doc_freq = np.zeros(self.n_clusters)
for desc in descriptors:
_, words = self.kdtree.knnSearch(desc, 1)
unique_words = np.unique(words)
for w in unique_words:
doc_freq[w] += 1
self.idf = np.log(len(descriptors) / (doc_freq + 1e-10))
# 构建倒排索引
for i, desc in enumerate(descriptors):
_, words = self.kdtree.knnSearch(desc, 1)
for w in words:
if w not in self.inverted_index:
self.inverted_index[w] = []
self.inverted_index[w].append(i)
def bow_vector(self, descriptors):
"""生成词袋向量"""
vec = np.zeros(self.n_clusters)
_, words = self.kdtree.knnSearch(descriptors, 1)
unique, counts = np.unique(words, return_counts=True)
vec[unique] = counts * self.idf[unique]
return vec / np.linalg.norm(vec)
2.3 相似度计算
- 深度特征描述:NetVLAD
3.1 VLAD算法原理
· 局部特征聚合:
· NetVLAD改进:
3.2 PyTorch实现
import torch
import torch.nn as nn
class NetVLAD(nn.Module):
def __init__(self, num_clusters=64, dim=128, alpha=100.0):
super(NetVLAD, self).__init__()
self.num_clusters = num_clusters
self.dim = dim
self.alpha = alpha
# 聚类中心
self.centroids = nn.Parameter(torch.rand(num_clusters, dim))
self.conv = nn.Conv2d(dim, num_clusters, kernel_size=1, bias=True)
# 初始化
self.conv.weight = nn.Parameter(
(2.0 * alpha * self.centroids).unsqueeze(-1).unsqueeze(-1)
self.conv.bias = nn.Parameter(
-alpha * torch.norm(self.centroids, dim=1)**2)
def forward(self, x):
"""输入: [B, D, H, W]"""
B, D = x.shape[0], x.shape[1]
# 计算软分配
soft_assign = self.conv(x) # [B, K, H, W]
soft_assign = F.softmax(soft_assign, dim=1)
# 展平特征
x_flat = x.view(B, D, -1) # [B, D, H*W]
soft_assign_flat = soft_assign.view(B, self.num_clusters, -1)
# 计算残差
residual = x_flat.unsqueeze(1) - self.centroids.unsqueeze(0).unsqueeze(-1)
# 加权残差
vlad = torch.zeros(B, self.num_clusters, D).to(x.device)
for k in range(self.num_clusters):
residual_k = residual[:, k, :, :]
weight_k = soft_assign_flat[:, k, :].unsqueeze(1)
vlad[:, k] = torch.sum(weight_k * residual_k, dim=2)
# 归一化
vlad = F.normalize(vlad, p=2, dim=2)
vlad = vlad.view(B, -1)
vlad = F.normalize(vlad, p=2, dim=1)
return vlad
3.3 相似度搜索加速
def build_faiss_index(descriptors, nlist=100):
"""构建Faiss索引"""
dim = descriptors.shape[1]
quantizer = faiss.IndexFlatL2(dim)
index = faiss.IndexIVFFlat(quantizer, dim, nlist)
# 训练索引
index.train(descriptors)
index.add(descriptors)
return index
def search_loops(query_vec, index, top_k=10):
"""搜索回环候选"""
D, I = index.search(query_vec.reshape(1,-1), top_k)
return I[0], D[0]
- 几何验证与一致性约束
4.1 PnP几何验证
· EPnP算法:
· RANSAC流程:
- 随机选择4个点
- 计算位姿
- 评估内点数量
- 重复直到收敛
4.2 几何验证实现
def geometric_verification(kp1, kp2, matches, K, reproj_thresh=3.0, inlier_ratio=0.5):
"""几何验证"""
# 提取匹配点
pts1 = np.float32([kp1[m.queryIdx].pt for m in matches])
pts2 = np.float32([kp2[m.trainIdx].pt for m in matches])
# 计算基础矩阵
F, mask_f = cv2.findFundamentalMat(pts1, pts2, cv2.FM_RANSAC, reproj_thresh)
# 计算本质矩阵
E = K.T @ F @ K
# 恢复位姿
_, R, t, mask_e = cv2.recoverPose(E, pts1, pts2, K)
# 计算重投影误差
inlier_mask = (mask_f.ravel() == 1) & (mask_e.ravel() == 1)
inlier_ratio = np.sum(inlier_mask) / len(matches)
return inlier_ratio > inlier_ratio, inlier_mask
4.3 多假设一致性验证
def multi_hypothesis_verification(loop_candidates, pose_graph):
"""多假设一致性验证"""
consistent_groups = []
# 构建一致性图
for i in range(len(loop_candidates)):
for j in range(i+1, len(loop_candidates)):
cand_i = loop_candidates[i]
cand_j = loop_candidates[j]
# 计算相对位姿一致性
if check_relative_pose_consistency(cand_i, cand_j, pose_graph):
# 添加到相同组
merge_groups(consistent_groups, i, j)
# 选择最大一致性组
best_group = max(consistent_groups, key=len)
best_candidates = [loop_candidates[i] for i in best_group]
# 选择分数最高的候选
best_candidate = max(best_candidates, key=lambda x: x.score)
return best_candidate
- 多模态回环检测
5.1 激光-视觉融合
class MultiModalLoopDetector:
def __init__(self, visual_vocab, lidar_index):
self.visual_vocab = visual_vocab
self.lidar_index = lidar_index
self.weights = {'visual': 0.6, 'lidar': 0.4}
def detect(self, frame, scan):
# 视觉检测
visual_candidates = self._visual_detection(frame)
# 激光检测
lidar_candidates = self._lidar_detection(scan)
# 融合结果
fused_candidates = []
for v_cand in visual_candidates:
for l_cand in lidar_candidates:
# 检查时空一致性
if self._check_spatial_temporal_consistency(v_cand, l_cand):
# 分数融合
score = (self.weights['visual'] * v_cand.score +
self.weights['lidar'] * l_cand.score)
cand = LoopCandidate(
current_idx=v_cand.current_idx,
loop_idx=(v_cand.loop_idx + l_cand.loop_idx) // 2,
score=score,
type='fused'
)
fused_candidates.append(cand)
return fused_candidates
def _check_spatial_temporal_consistency(self, cand1, cand2):
"""检查时空一致性"""
# 时间一致性
if abs(cand1.loop_idx - cand2.loop_idx) > 10:
return False
# 位置一致性
pose1 = get_pose(cand1.loop_idx)
pose2 = get_pose(cand2.loop_idx)
dist = np.linalg.norm(pose1[:3,3] - pose2[:3,3])
return dist < 2.0 # 2米范围内视为一致
5.2 跨楼层检测
def cross_floor_detection(current_scan, floor_maps):
"""跨楼层检测"""
# 提取高度特征
height_features = extract_height_features(current_scan)
# 与各楼层地图匹配
best_floor = -1
best_score = -1
for i, floor_map in enumerate(floor_maps):
# 匹配高度分布
score = compare_height_distribution(height_features, floor_map.height_hist)
# 匹配平面布局
layout_score = compare_layout_similarity(current_scan, floor_map.layout)
total_score = 0.7 * score + 0.3 * layout_score
if total_score > best_score:
best_score = total_score
best_floor = i
return best_floor, best_score
- 实例:大型商场多楼层定位修复
6.1 问题场景
· 商场环境特性:
· 多层相似结构(每层店铺布局相似)
· 动态物体密集(顾客流动)
· 光照变化剧烈(自然光+人工光源)
6.2 解决方案架构
6.3 关键技术实现
- 光照不变特征
def extract_illumination_invariant_features(image):
"""提取光照不变特征"""
# LAB颜色空间
lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB)
l, a, b = cv2.split(lab)
# 梯度特征
grad_x = cv2.Sobel(l, cv2.CV_32F, 1, 0, ksize=3)
grad_y = cv2.Sobel(l, cv2.CV_32F, 0, 1, ksize=3)
grad_mag = np.sqrt(grad_x**2 + grad_y**2)
# 纹理特征
lbp = local_binary_pattern(l, P=8, R=1)
return np.dstack((grad_mag, lbp))
- 动态物体过滤
def filter_dynamic_objects(scan, semantic_labels):
"""基于语义过滤动态物体"""
static_mask = np.isin(semantic_labels, ['wall', 'shelf', 'counter'])
return scan[static_mask]
- 跨楼层验证
def verify_cross_floor(candidate, floor_maps):
"""跨楼层验证"""
# 提取当前高度特征
current_heights = extract_scan_heights(candidate.scan)
# 匹配各楼层高度分布
best_match = -1
best_score = -1
for floor_id, floor_data in floor_maps.items():
# 计算KL散度
kl_div = compute_kl_divergence(current_heights, floor_data['height_dist'])
score = np.exp(-kl_div)
if score > best_score:
best_score = score
best_match = floor_id
return best_match, best_score
6.4 修复效果对比
- 前沿进展:深度学习回环检测
7.1 端到端回环检测
· 网络架构:
class LoopDetectorNet(nn.Module):
def __init__(self):
super().__init__()
self.backbone = ResNet34(pretrained=True)
self.vlad = NetVLAD(num_clusters=64)
self.fc = nn.Sequential(
nn.Linear(16384, 2048),
nn.ReLU(),
nn.Linear(2048, 512)
)
def forward(self, x):
features = self.backbone(x)
vlad = self.vlad(features)
return self.fc(vlad)
· 三元组损失:
7.2 时序一致性学习
class TemporalConsistencyLSTM(nn.Module):
def __init__(self, input_size, hidden_size):
super().__init__()
self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
self.fc = nn.Linear(hidden_size, 1)
def forward(self, sequence):
# sequence: [B, T, D]
out, _ = self.lstm(sequence)
scores = torch.sigmoid(self.fc(out[:, -1, :]))
return scores
7.3 语义增强回环检测
def semantic_aware_detection(image, scan):
"""语义增强回环检测"""
# 分割语义
seg_image = semantic_segmentation(image)
seg_scan = lidar_semantic_segmentation(scan)
# 提取语义特征
image_features = extract_semantic_features(seg_image)
scan_features = extract_scan_semantic_features(seg_scan)
# 联合检索
candidates = joint_retrieval(image_features, scan_features)
return candidates
关键理论总结
- 词袋模型:TF-IDF加权与倒排索引
- 深度特征:NetVLAD聚合与高效检索
- 几何验证:PnP+RANSAC鲁棒估计
- 多模态融合:视觉-激光时空一致性
- 场景理解:语义增强与跨楼层识别
下篇预告:第五篇:后端优化——位姿图的灵魂
将深入讲解:
· 图优化理论与高斯牛顿法
· g2o优化框架实战
· 滑动窗口与边缘化技术
· IMU预积分约束