【大模型学习】一个基于大模型给出的学习大模型计划

第一阶段:基础知识与理论

目标:掌握机器学习、深度学习的基础知识以及自然语言处理的核心概念。

学习内容:
  1. 机器学习基础
    • 线性回归、分类(SVM、随机森林等)。
    • 优化算法(梯度下降、Adam等)。
    • 概率论与统计学基础。
  2. 深度学习基础
    • 神经网络基础(前馈神经网络、卷积神经网络CNN、循环神经网络RNN)。
    • 反向传播与链式法则。
    • 深度学习框架(如TensorFlow、PyTorch)。
  3. 自然语言处理基础
    • 词嵌入(Word2Vec、GloVe、FastText)。
    • 语言模型(RNN、LSTM、GRU)。
    • 分词与句法分析。
推荐资料:
  • 书籍:《机器学习实战》、《深度学习入门:基于Python的理论与实践》。
  • 在线课程:Coursera上的“Andrew Ng的机器学习”和“DeepLearning.AI的深度学习专项”。
  • 论文:阅读一些经典的NLP论文(如“Attention Is All You Need”)。

第二阶段:大模型的核心技术

目标:深入理解Transformer架构、注意力机制以及预训练语言模型的基本原理。

学习内容:
  1. Transformer架构
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包

    打赏作者

    IT喂嘟盲

    你的鼓励将是我创作的最大动力

    ¥1 ¥2 ¥4 ¥6 ¥10 ¥20
    扫码支付:¥1
    获取中
    扫码支付

    您的余额不足,请更换扫码支付或充值

    打赏作者

    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值