第一阶段:基础知识与理论
目标:掌握机器学习、深度学习的基础知识以及自然语言处理的核心概念。
学习内容:
- 机器学习基础:
- 线性回归、分类(SVM、随机森林等)。
- 优化算法(梯度下降、Adam等)。
- 概率论与统计学基础。
- 深度学习基础:
- 神经网络基础(前馈神经网络、卷积神经网络CNN、循环神经网络RNN)。
- 反向传播与链式法则。
- 深度学习框架(如TensorFlow、PyTorch)。
- 自然语言处理基础:
- 词嵌入(Word2Vec、GloVe、FastText)。
- 语言模型(RNN、LSTM、GRU)。
- 分词与句法分析。
推荐资料:
- 书籍:《机器学习实战》、《深度学习入门:基于Python的理论与实践》。
- 在线课程:Coursera上的“Andrew Ng的机器学习”和“DeepLearning.AI的深度学习专项”。
- 论文:阅读一些经典的NLP论文(如“Attention Is All You Need”)。
第二阶段:大模型的核心技术
目标:深入理解Transformer架构、注意力机制以及预训练语言模型的基本原理。
学习内容:
- Transformer架构: