【论文合集】TMI 202106论文汇总(IEEE Transactions on Medical Imaging)

本文汇总了2021年IEEE Transactions on Medical Imaging期刊的部分论文,涵盖了医学图像的分割、协调、诊断、分析等多个领域。这些研究包括使用深度学习进行图像分割、病灶识别、体积估计和病理变化检测等,旨在提高医学图像分析的准确性和临床实用性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. Segmentation-Renormalized Deep Feature Modulation for Unpaired Image Harmonization

用于不成对图像协调的分割重归一化深度特征调制

Mengwei Ren. Neel Dey. James Fishbaugh. Guido Gerig.

原文链接

Deep networks are now ubiquitous in large-scale multi-center imaging studies. However, the direct aggregation of images across sites is contraindicated for downstream statistical and deep learning-based image analysis due to inconsistent contrast, resolution, and noise. To this end, in the absence of paired data, variations of Cycle-consistent Generative Adversarial Networks have been used to harmonize image sets between a source and target domain. Importantly, these methods are prone to instability, contrast inversion, intractable manipulation of pathology, and steganographic mappings which limit their reliable adoption in real-world medical imaging. In this work, based on an underlying assumption that morphological shape is consistent across imaging sites, we propose a segmentation-renormalized image translation framework to reduce inter-scanner heterogeneity while preserving anatomical layout. We replace the affine transformations used in the normalization layers within generative networks with trainable scale and shift parameters conditioned on jointly learned anatomical segmentation embeddings to modulate features at every level of translation. We evaluate our methodologies against recent baselines across several imaging modalities (T1w MRI, FLAIR MRI, and OCT) on datasets with and without lesions. Segmentation-renormalization for translation GANs yields superior image harmonization as quantified by Inception distances, demonstrates improved downstream utility via post-hoc segmentation accuracy, and improved robustness to translation perturbation and self-adversarial attacks.


2. A Cervical Histopathology Dataset for Computer Aided Diagnosis of Precancerous Lesions

用于计算机辅助诊断癌前病变的宫颈组织病理学数据集

Zhu Meng. Zhicheng Zhao. Bingyang Li. Fei Su. Limei Guo.

原文链接

Cervical cancer, as one of the most frequently diagnosed cancers worldwide, is curable when detected early. Histopathology images play an important role in precision medicine of the cervical lesions. However, few computer aided algorithms have been explored on cervical histopathology images due to the lack of public datasets. In this article, we release a new cervical histopathology image dataset for automated precancerous diagnosis. Specifically, 100 slides from 71 patients are annotated by three independent pathologists. To show the difficulty of the task, benchmarks are obtained through both fully and weakly supervised learning. Extensive experiments based on typical classification and semantic segmentation networks are carried out to provide strong baselines. In particular, a strategy of assembling classification, segmentation, and pseudo-labeling is proposed to further improve the performance. The Dice coefficient reaches 0.7833, indicating the feasibility of computer aided diagnosis and the effectiveness of our weakly supervised ensemble algorithm. The dataset and evaluation codes are publicly available. To the best of our knowledge, it is the first public cervical histopathology dataset for automated precancerous segmentation. We believe that this work will attract researchers to explore novel algorithms on cervical automated diagnosis, thereby assisting doctors and patients clinically.


3. Learning With Context Feedback Loop for Robust Medical Image Segmentation

使用上下文反馈循环进行稳健医学图像分割的学习

Kibrom Berihu Girum. Gilles Créhange. Alain Lalande.

原文链接

Deep learning has successfully been leveraged for medical image segmentation. It employs convolutional neural networks (CNN) to learn distinctive image features from a defined pixel-wise objective function. However, this approach can lead to less output pixel interdependence producing incomplete and unrealistic segmentation results. In this paper, we present a fully automatic deep learning method for robust medical image segmentation by formulating the segmentation problem as a recurrent framework using two systems. The first one is a forward system of an encoder-decoder CNN that predicts the segmentation result from the input image. The predicted probabilistic output of the forward system is then encoded by a fully convolutional network (FCN)-based context feedback system. The encoded feature space of the FCN is then integrated back into the forward system’s feed-forward learning process. Using the FCN-based context feedback loop allows the forward system to learn and extract more high-level image features and fix previous mistakes, thereby improving prediction accuracy over time. Experimental results, performed on four different clinical datasets, demonstrate our method’s potential application for single and multi-structure medical image segmentation by outperforming the state of the art methods. With the feedback loop, deep learning methods can now produce results that are both anatomically plausible and robust to low contrast images. Therefore, formulating image segmentation as a recurrent framework of two interconnected networks via context feedback loop can be a potential method for robust and efficient medical image analysis.


4. Cascaded Regression Neural Nets for Kidney Localization and Segmentation-free Volume Estimation

用于肾脏定位和无分割体积估计的级联回归神经网络

Mohammad Arafat Hussain. Ghassan Hamarneh. Rafeef Garbi.

原文链接

Kidney volume is an essential biomarker for a number of kidney disease diagnoses, for example, chronic kidney disease. Existing total kidney volume estimation methods often rely on an intermediate kidney segmentation step. On the other hand, automatic kidney localization in volumetric medical images is a critical step that often precedes subsequent data processing and analysis. Most current approaches perform kidney localization via an intermediate classification or regression step. This paper proposes an integrated deep learning app

### 关于TMI 2025的相关论文 IEEE Transactions on Medical Imaging (TMI) 是医学成像领域的重要期刊之一,通常每年会发布多篇高质量的研究文章。然而,“TMI 2025”可能指代的是特定年份的出版物或者是某个特别的主题研究方向。如果是指具体的会议,则需要注意区分是期刊特刊还是与之相关的学术活动。 对于查找具体年份或主题下的论文,可以采用以下方法: #### 方法一:通过官方数据库检索 可以直接访问 IEEE Xplore 数据库并输入关键词 “TMI 2025”,或者限定时间范围至 2025 年来筛选相关内容[^1]。 ```plaintext https://ieeexplore.ieee.org/ ``` #### 方法二:利用Google Scholar高级搜索功能 在 Google Scholar 中设置精确的时间段(如2025),并将关键字设为“TMI medical imaging”。这有助于定位到最新的研究成果[^2]。 ```plaintext https://scholar.google.com/ ``` #### 示例代码片段用于自动化查询(基于Python实现) 下面提供一段简单的 Python 脚本作为示例,展示如何批量获取 IEEE Xplore 的元数据信息: ```python import requests from bs4 import BeautifulSoup def fetch_ieee_papers(year="2025", journal="TMI"): base_url = f"https://ieeexplore.ieee.org/search/searchresult.jsp?queryText={journal}&facetYearFrom={year}&facetYearTo={year}" response = requests.get(base_url) soup = BeautifulSoup(response.content, 'html.parser') results = [] for item in soup.find_all('div', class_='List-results-items'): title = item.find('a', class_='title').text.strip() link = "https://ieeexplore.ieee.org" + item.find('a')['href'] abstract = item.find('div', class_='description').text.strip()[:100] + "..." result = { "Title": title, "Link": link, "Abstract": abstract } results.append(result) return results papers = fetch_ieee_papers() for paper in papers: print(f"{paper['Title']} - {paper['Link']}\n{paper['Abstract']}") ``` 此脚本仅作演示用途,请确保遵守目标网站的服务条款。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值