大数据常见面试题之spark sql

本文深入探讨了SparkSQL的工作原理,包括数据集的创建、DataFrame与RDD的区别、处理结构化和非结构化数据的方法,以及DataSet作为Dataframe的升级版所具备的优势。同时,文章详细解释了SparkSQL的运行流程、缓存策略、join与leftjoin操作的区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.创建DataSet的几种方式

  • 1.由DataFrame转化成DataSet
  • 2.通过SparkSession.createDataSet()直接创建
  • 3.通过toDS方法隐式转换

二.DataFrame相对RDD有哪些不同

RDD特点:

  • RDD是一个懒执行的不可变的可以支持Lambda表达式的并行数据集合
  • RDD的最大好处就是简单,API的人性化程度很高
  • RDD的劣势是性能限制,它是一个JVM驻内存对象,这也就决定了存在GC的限制和数据增加时Java序列化成本的升高

DataFrame特点:

  • 与RDD类似,DataFrame也是一个分布式数据容器.然而DataFrame更像传统数据库的二维表格,除了数据以外,还记录数据的结构信息,即schema.同时,与Hive类似,DataFrame也支持嵌套数据类型(struct,array和map).从API易用性角度上看,DataFrame API提供的是一套高层的关系操作比函数式的RDD API要更加友好,门槛更低.由于与R和Pandas的DataFrame类似,Spark DataFrame很好地继承了传统单机数据分析的开发体验

三.SparkSql如何处理结构化数据和非结构化数据

  • 结构化数据:Json转化为DataFrame,通过注册表操作sql的方式
  • 非结构化数据:通过反射推断方式,构建一个Schema

四.RDD DataFrame DataSet的区别

  • 其实dataset是dataframe的升级版,相当于dataframe是dataset的子集,主要区别在于,在spark2.0以后的dataset添加的编码器,在dataframe中他不是面向对象的编程思想,而在dataset中变成面向对象编程,同时dataset相当于dataframe和rdd的整合版,操作更加灵活

1.RDD

优点:

  • 编译时类型安全
  • 编译时就能检查出类型错误
  • 面向对象的编程风格
  • 直接通过类名点的方式来操作数据

缺点:

  • 序列化和反序列化的性能开销
  • 无论是集群间的通信,还是IO操作都需要对象的结构和数据进行序列化和反序列化
  • GC的性能开销,频繁的创建和销毁对象,势必会增加GC

2.DataFrame

  • DataFrame引入了schema和off-heap
  • schema: RDD 每一行数据,结构都是一样的,这个结构就存储在schema中.spark通过schema就能够读懂数据,因此在通信和IO时就只需要序列化个反序列化数据,而结构的部分就可以省略了

3.DataSet

  • DataSet结合了RDD和DataFrame的优点,并带来了一个新的概念Encoder
  • 当序列化数据时,Encoder产生字节码与off-heap进行交互,能够达到按需访问数据的效果,而不用反序列化整个对象

五.spark sql运行流程

1)对读入的sql语句进行解析

  • 分辨出sql语句中有哪些是关键词(如:select,from,where),哪些是表达式,哪些是Projection,哪些是Data Source等
  • 判断sql语句是否规范

2)将sql语句和数据库的数据字典进行绑定

  • 数据字典:列,表,视图等
  • 若相关的Projection DataSource 等都是存在的话,就表示该sql语句是可以执行的

3)数据库选择最优执行计划

  • 数据库会提供几个执行计划,这些计划都会运行统计数据
  • 数据库会从上述各种执行计划中选择一个最优计划

4)执行计划

  • 按照Operation(操作)–>DataSource(数据源)–>Result的次序来执行
  • 在执行的过程中有时候甚至不需要读取物理表就可以返回结果,比如重新运行刚运行的sql语句,可直接从数据库的缓冲池中返回结果

六.spark sql原理

  • Catalyst是spark sql执行优化器的代号,所有spark sql语句最终都能通过它来解析,优化,最终生成可以执行的Java字节码
  • Catalyst最主要的数据结构是树,所有sql语句都会用树结构来存储,树中的每个节点有一个类(class),以及0或多个子节点.scala中定义的新的节点类型都是TreeNode这个类的子类
  • Catalyst另外一个重要的概念是规则.基本上所有优化都是基于规则的.可以用规则对树进行操作,树中的节点是只读的,所以树也是只读的.规则中定义的函数可能实现从一棵树转换成一颗新树

整个Catalyst的执行过程可分为以下4个阶段:

  • 1)分析阶段,分析逻辑树,解决引用
  • 2)逻辑优化阶段
  • 3物理计划阶段,Catalyst会生成多个计划,并基于成本进行对比
  • 4)代码生成阶段

七.spark sql 中缓存方式

  • 1):通过SqlContext实例.cacheTable(“表名”)缓存一张临时表
  • 2):通过DataFrame实例.cache()缓存一张虚拟表
    注意:registerTempTable不是action类型的算子,不发生缓存

八.spark sql中join操作与left join操作区别

  • join和sql中的inner join操作很相似,返回结果是前面一个集合和后面一个集合中匹配成功的,过滤掉关联不上的
  • left join\
  • 类似于sql中的左外连接left outer join,返回结果以第一个RDD为主,关联不上的记录为空
  • 部分场景下可以使用left semi join替代left join:
  • 因为left semi join是in(keySet)的关系,遇到右表重复记录,左表会跳过,性能更高,而left join则会一直遍历,但是left semijoin中最后select的结果中只许出现左表中的列名,因为右表只有join key参与关联计算了
### 大数据开发常见面试问题及答案解析 在大数据领域,常见面试问题通常涵盖多个方面,包括Hadoop生态系统、分布式计算框架(如Spark、Flink)、数据存储系统(如HBase、Hive)以及数据处理和优化技术。以下是一些高频出现的问题及其详细解析: #### 1. **HDFS的基本原理是什么?** HDFS 是 Hadoop 的核心组件之一,它是一个分布式文件系统,用于存储大规模数据[^4]。其基本原理包括: - **数据分块**:HDFS 将大文件分割成多个块,默认大小为 128MB,并将这些块分布在整个集群中。 - **高容错性**:为了确保数据的可靠性,每个数据块都会被复制到多个节点上,默认情况下是三个副本。 - **主从架构**:HDFS 使用 NameNode 和 DataNode 的结构。NameNode 负责管理元数据,而 DataNode 负责实际的数据存储。 #### 2. **Flink 和 Spark Streaming 的主要区别是什么?** Flink 和 Spark Streaming 都是用于流处理的框架,但它们的设计理念和实现方式有所不同[^2]: - **Flink**:基于事件驱动的实时处理引擎,能够提供低延迟和高吞吐量。Flink 的状态管理和窗口机制非常强大,适用于需要精确一次语义的应用场景。 - **Spark Streaming**:采用微批处理模型,即将连续的数据流分成小批次进行处理。虽然这种方法可以利用 Spark 的批处理能力,但在实时性和延迟方面不如 Flink。 #### 3. **Hive、Spark SQL 和 Presto 的区别是什么?** 这三者都是用于查询和分析大规模数据集的工具,但各有特点[^3]: - **Hive**:基于 Hadoop 的数据仓库工具,使用类 SQL 语句进行查询,适合处理大规模离线数据。Hive 查询会被转换为 MapReduce 或 Tez 任务执行。 - **Spark SQL**:Spark 生态系统中的模块,提供 SQL 查询接口,支持多种数据源,可以进行实时和离线数据分析。Spark SQL 利用了内存计算的优势,性能优于 Hive。 - **Presto**:由 Facebook 开发的分布式 SQL 查询引擎,专为快速查询大规模数据设计。Presto 支持多种数据源,包括 HDFS、MySQL、Cassandra 等,且具有良好的扩展性和灵活性。 #### 4. **如何优化 Hive 查询性能?** 优化 Hive 查询可以从以下几个方面入手: - **分区和桶表**:通过对表进行分区或桶化,可以减少查询时扫描的数据量,提高查询效率。 - **压缩和存储格式**:选择合适的压缩算法和存储格式(如 ORC、Parquet)可以显著减小存储空间并提升 I/O 效率。 - **调整参数**:合理设置 Hive 的配置参数,例如 `hive.exec.reducers.bytes.per.reducer` 和 `hive.optimize.pruner`,以优化查询计划和资源利用率。 - **索引**:虽然 Hive 不支持传统意义上的索引,但可以通过创建物化视图或其他辅助结构来加速特定查询。 #### 5. **什么是 MapReduce?它的优缺点是什么?** MapReduce 是一种编程模型,主要用于处理和生成大规模数据集。它的工作流程分为两个阶段:Map 阶段和 Reduce 阶段。 - **优点**: - **可扩展性强**:可以在大量廉价硬件上运行,轻松扩展到数千个节点。 - **容错性好**:自动处理失败的任务,保证了作业的成功完成。 - **缺点**: - **延迟较高**:由于 MapReduce 是基于磁盘的计算模型,因此不适合实时处理。 - **编程复杂度高**:编写高效的 MapReduce 程序需要较多的代码和调试工作。 #### 6. **Spark 中的 RDD 和 DataFrame 有什么区别?** - **RDD**:弹性分布式数据集,是 Spark 最基础的数据抽象,提供了低层次的 API 操作。RDD 是类型化的,用户可以直接操作 JVM 对象。 - **DataFrame**:DataFrame 是基于 RDD 构建的高层抽象,类似于关系型数据库中的表,具有 schema 信息。DataFrame 提供了更简洁的 API,并且内部进行了大量的优化,例如 Catalyst 优化器会自动对查询计划进行优化。 #### 7. **Kafka 的作用是什么?它是如何工作的?** Kafka 是一个分布式流处理平台,广泛应用于构建实时数据管道和流应用。Kafka 的主要功能包括: - **消息队列**:Kafka 可以作为高性能的消息中间件,支持发布/订阅模式。 - **持久化存储**:Kafka 将消息持久化到磁盘,支持长时间的消息保留。 - **流处理**:Kafka Streams API 允许开发者直接在 Kafka 上进行流处理。 Kafka 的工作原理主要包括生产者、消费者和 broker。生产者将消息发送到指定的主题,broker 接收并存储消息,消费者从 broker 拉取消息进行处理。 #### 8. **HBase 的架构和特性是什么?** HBase 是一个分布式的、面向列的 NoSQL 数据库,适用于海量数据的随机读写。HBase 的架构主要包括以下几个组件: - **ZooKeeper**:负责协调和管理集群中的各个节点。 - **HMaster**:负责管理表和 RegionServer,处理客户端请求。 - **RegionServer**:负责管理一个或多个 Region,处理数据的读写请求。 HBase 的特性包括: - **强一致性**:HBase 提供了强一致性的读写操作。 - **水平扩展**:HBase 可以通过增加更多的 RegionServer 来扩展集群规模。 - **稀疏存储**:HBase 支持稀疏数据存储,节省存储空间。 #### 9. **什么是 Lambda 架构?为什么它在大数据中很重要?** Lambda 架构是一种用于处理大规模数据的架构模式,旨在同时支持批处理和实时处理。Lambda 架构的主要组成部分包括: - **批处理层**:处理历史数据,生成批处理视图。 - **速度层**:处理实时数据流,生成实时视图。 - **服务层**:合并批处理视图和实时视图,对外提供统一的查询接口。 Lambda 架构的重要性在于它可以兼顾数据的完整性和实时性,适用于需要同时处理历史数据和实时数据的场景。 #### 10. **如何监控和调优 Spark 应用程序?** 监控和调优 Spark 应用程序可以从以下几个方面入手: - **Spark UI**:通过 Spark UI 查看应用程序的运行情况,包括任务调度、执行时间和资源使用情况。 - **日志分析**:查看详细的日志信息,定位瓶颈和异常。 - **参数调优**:合理设置 Spark 的配置参数,例如 `spark.executor.memory` 和 `spark.sql.shuffle.partitions`,以优化性能。 - **数据倾斜处理**:识别并解决数据倾斜问题,例如通过重新分区或使用盐值来均匀分布数据。 ```python # 示例:Spark SQL 查询优化 from pyspark.sql import SparkSession # 创建 SparkSession spark = SparkSession.builder.appName("OptimizeQuery").getOrCreate() # 设置合理的 shuffle 分区数 spark.conf.set("spark.sql.shuffle.partitions", "8") # 读取 Parquet 格式的数据 df = spark.read.parquet("/path/to/data") # 执行查询 result = df.filter(df["column"] > 100).groupBy("category").count() # 显示结果 result.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值