3D
降噪原理是对图像中的运动物体采取2D
降噪,静止部分(称为背景)采取3D
降噪以防止运动物体模糊(blur
)。
1)第一步为运动估计
在参考帧(为前一帧已经过降噪的图像)中搜索和当前帧中16*16
当前块相近的参考块,其中最相近的块为匹配块。
根据匹配块,获得运动向量(motion vector
)。
为减小计算,一般仅在以当前块为中心的一个小范围内搜索参考块,如在20*20
的小范围内。
2)滤波模式判断
设置两个门限值:
- 参考块和当前块差值残差阈值
TH1
(通常为一个较小的值,如5 ~ 20
之间) - 运动向量阈值
TH2
(该阈值通常在+/-1 ~ +/- 3
)
a)若每一像素点处的残差小于TH1
,且参考块和当前块的运动向量值小于TH2
,则可认为当前块为背景,即非运动物体。
滤波策略是:使能2D
滤波,同时使能3D
滤波。3D
滤波即当前块和参考块的平均。
b)若残差大于TH1
,则,判断为非背景,只使用2D
滤波。
c)若残差小于TH1
,但运动向量大于TH2
,则判断为非背景,只使用2D
滤波(因背景几乎是不动的)。
3)梯度计算、边缘判断和快效应改善
计算水平和垂直方向相邻像素的差值,获得一个梯度矩阵。
比较两个方向的梯度大小。若梯度超过设定的阈值,则以值较大的一个方向来计算该点的像素值:
px