pat乙级1060 爱丁顿数

英国天文学家爱丁顿很喜欢骑车。据说他为了炫耀自己的骑车功力,还定义了一个“爱丁顿数” E ,即满足有 E 天骑车超过 E 英里的最大整数 E。据说爱丁顿自己的 E 等于87。

现给定某人 N 天的骑车距离,请你算出对应的爱丁顿数 E(≤N)。

输入格式:

输入第一行给出一个正整数 N (≤105),即连续骑车的天数;第二行给出 N 个非负整数,代表每天的骑车距离。

输出格式:

在一行中给出 N 天的爱丁顿数。

输入样例:

10
6 7 6 9 3 10 8 2 7 8

输出样例:

6

读了几遍没有理解题意,后来在网上看了几遍讲解大概明白了     ~~~ 烦恼~~~ 晴天霹雳  题都读不明白咋整~~~~~~~ε=(´ο`*)))唉

E天骑车超过E英里的最大整数E .  分析: 骑车的天数E   骑行的距离E(这里应该是指每天的 骑行距离)   超过骑行距离的最大整数E   也就是说我骑了10天车,我看看在这个10天里,哪几天的骑行距离 都是超过我骑行第i天天数,求解这个i的最大值是多少。

图中示例  骑行10,第一天天数为1,那么我这骑行全部的10天里骑行距离都是大于1。所以满足,但不是最大值,第二天天数为2,那么我10天里有9天的骑行距离大于2满足,但不是最大值,依次类推,第六天天数是6,骑行10天里我有 六天里骑车距离是大于6的, 那么我们再看第七天 , 10天里只有四天骑行的距离是大于7的  所以第六天的六是爱丁顿数。

代码如下

#include <iostream>
#include<vector>
#include<algorithm>
using namespace std;
int main()
{
    int n;
    cin >> n;
    int distance[100000] = {0};
    for (int i = 0; i < n; i++)
    {
        int temp;
        cin >> temp;
        distance[i] = temp;
    }
    sort(distance, distance + n, [](const int& a, const int& b)
    {
    
        return a <b;
    });
   
    for (int i = 1; i<=n; i++)
    {
        if (distance[i-1] >n-i+1)
        {

            cout << n - i + 1;
            return 0;
        }
    }
    cout << 0 << endl;
}

参考来自csdn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值