英国天文学家爱丁顿很喜欢骑车。据说他为了炫耀自己的骑车功力,还定义了一个“爱丁顿数” E ,即满足有 E 天骑车超过 E 英里的最大整数 E。据说爱丁顿自己的 E 等于87。
现给定某人 N 天的骑车距离,请你算出对应的爱丁顿数 E(≤N)。
输入格式:
输入第一行给出一个正整数 N (≤105),即连续骑车的天数;第二行给出 N 个非负整数,代表每天的骑车距离。
输出格式:
在一行中给出 N 天的爱丁顿数。
输入样例:
10
6 7 6 9 3 10 8 2 7 8
输出样例:
6
读了几遍没有理解题意,后来在网上看了几遍讲解大概明白了 ~~~ 烦恼~~~ 晴天霹雳 题都读不明白咋整~~~~~~~ε=(´ο`*)))唉
E天骑车超过E英里的最大整数E . 分析: 骑车的天数E 骑行的距离E(这里应该是指每天的 骑行距离) 超过骑行距离的最大整数E 也就是说我骑了10天车,我看看在这个10天里,哪几天的骑行距离 都是超过我骑行第i天天数,求解这个i的最大值是多少。
图中示例 骑行10,第一天天数为1,那么我这骑行全部的10天里骑行距离都是大于1。所以满足,但不是最大值,第二天天数为2,那么我10天里有9天的骑行距离大于2满足,但不是最大值,依次类推,第六天天数是6,骑行10天里我有 六天里骑车距离是大于6的, 那么我们再看第七天 , 10天里只有四天骑行的距离是大于7的 所以第六天的六是爱丁顿数。
代码如下
#include <iostream>
#include<vector>
#include<algorithm>
using namespace std;
int main()
{
int n;
cin >> n;
int distance[100000] = {0};
for (int i = 0; i < n; i++)
{
int temp;
cin >> temp;
distance[i] = temp;
}
sort(distance, distance + n, [](const int& a, const int& b)
{
return a <b;
});
for (int i = 1; i<=n; i++)
{
if (distance[i-1] >n-i+1)
{
cout << n - i + 1;
return 0;
}
}
cout << 0 << endl;
}
参考来自csdn