给定一段一段的绳子,你需要把它们串成一条绳。每次串连的时候,是把两段绳子对折,再如下图所示套接在一起。这样得到的绳子又被当成是另一段绳子,可以再次对折去跟另一段绳子串连。每次串连后,原来两段绳子的长度就会减半。
给定 N 段绳子的长度,你需要找出它们能串成的绳子的最大长度。
输入格式:
每个输入包含 1 个测试用例。每个测试用例第 1 行给出正整数 N (2≤N≤104);第 2 行给出 N 个正整数,即原始绳段的长度,数字间以空格分隔。所有整数都不超过104。
输出格式:
在一行中输出能够串成的绳子的最大长度。结果向下取整,即取为不超过最大长度的最近整数。
这道题正常解就行,第一段绳子和第二段绳子各一半相加作为sum,之后每个和的一半和另一段绳子的一半相加。向下取整函数floor, 还有它的头文件cmath
代码如下
#include <iostream>
#include <vector>
#include<cmath>
#include<algorithm>
using namespace std;
int main()
{
int n;
vector<int>line;
float sum = 0;
cin >> n;
for (int i = 0; i < n; i++)
{
int input;
cin >> input;
line.push_back(input);
}
sort(line.begin(), line.end(), [](const int& a,const int &b) {
return a < b;
});
sum = line[0] * 1.0 / 2;
for (int i = 1; i < n; i++)
{
if(i==1)
sum += 1.0*line[i]/2;
else
{
sum = sum * 1.0 / 2 + line[i] * 1.0 / 2;
}
}
cout << floor(sum) << endl;
}