地球人习惯使用十进制数,并且默认一个数字的每一位都是十进制的。而在 PAT 星人开挂的世界里,每个数字的每一位都是不同进制的,这种神奇的数字称为“PAT数”。每个 PAT 星人都必须熟记各位数字的进制表,例如“……0527”就表示最低位是 7 进制数、第 2 位是 2 进制数、第 3 位是 5 进制数、第 4 位是 10 进制数,等等。每一位的进制 d 或者是 0(表示十进制)、或者是 [2,9] 区间内的整数。理论上这个进制表应该包含无穷多位数字,但从实际应用出发,PAT 星人通常只需要记住前 20 位就够用了,以后各位默认为 10 进制。
在这样的数字系统中,即使是简单的加法运算也变得不简单。例如对应进制表“0527”,该如何计算“6203 + 415”呢?我们得首先计算最低位:3 + 5 = 8;因为最低位是 7 进制的,所以我们得到 1 和 1 个进位。第 2 位是:0 + 1 + 1(进位)= 2;因为此位是 2 进制的,所以我们得到 0 和 1 个进位。第 3 位是:2 + 4 + 1(进位)= 7;因为此位是 5 进制的,所以我们得到 2 和 1 个进位。第 4 位是:6 + 1(进位)= 7;因为此位是 10 进制的,所以我们就得到 7。最后我们得到:6203 + 415 = 7201。
输入格式:
输入首先在第一行给出一个 N 位的进制表(0 < N ≤ 20),以回车结束。 随后两行,每行给出一个不超过 N 位的非负的 PAT 数。
输出格式:
在一行中输出两个 PAT 数之和。
输入样例:
30527
06203
415
测试点 1.3.5 没有过。测试点5 没有考虑两个都是0相加。 测试点 1.3 是因为 。有进位的时候我是按照1计算的 实际应该是和除以进制位, 对应位上的数字我是 按照和减去进制计算的,实际应该是和对进制位求余。
我的代码如下
#include <iostream>
#include<string>
using namespace std;
int main()
{
string form;
string n1, n2;
string temp;
cin >> form >> n1 >> n2;
if (n1.size() < n2.size())
{
temp = n1;
n1 = n2;
n2 = temp;
}
int m_n1, m_n2,m_form;
int jinwei=0;
string totalSum;
int diffLength = n1.length() - n2.length();
for(int i=n1.size()-1;i>=0;i--)
{
m_n1 = n1[i] - '0';
m_form = form[i] - '0';
int sum = 0;
if (i >= (n1.size() - n2.size()))
{
m_n2 = n2[i-diffLength] - '0';
sum = m_n1 + m_n2 + jinwei;
}
else
{
sum = m_n1 + jinwei;
}
if (m_form == 0)
m_form = 10;
if (sum >= m_form)
{
jinwei = sum/m_form;
sum =sum%m_form;
}
else
{
jinwei = 0;
}
totalSum += to_string(sum);
}
if (jinwei != 0)
{
totalSum.append(to_string(jinwei));
}
string outputSum;
bool flag = false;
for (int i = totalSum.size()-1; i >=0; i--)
{
if ( (i == totalSum.size() - 1) && (totalSum[i] == '0'))
continue;
outputSum += totalSum[i];
if (totalSum[i] != '0')
flag = true;
}
if (!flag)
cout << "0" << endl;
else
cout << outputSum << endl;
}