所谓缘分数是指这样一对正整数 a 和 b,其中 a 和它的小弟 a−1 的立方差正好是另一个整数 c 的平方,而 c 正好是 b 和它的小弟 b−1 的平方和。例如 83−73=169=132,而 13=32+22,于是 8 和 3 就是一对缘分数。
给定 a 所在的区间 [m,n],是否存在缘分数?
输入格式:
输入给出区间的两个端点 0<m<n≤25000,其间以空格分隔。
输出格式:
按照 a 从小到大的顺序,每行输出一对缘分数,数字间以空格分隔。如果无解,则输出 No Solution
。
输入样例 1:
8 200
输出样例 1:
8 3
105 10
输入样例 2:
9 100
输出样例 2:
No Solution
测试点4卡到了 。排除缘分数是同一个值。
我的代码
#include<cmath>
#include <iostream>
using namespace std;
int main()
{
int m, n;
cin >> m >> n;
int temp1=0;
int temp2 = 0;
bool flag = false;
for (int i = m; i <= n; i++)
{
temp1 = i;
temp2 = i - 1;
int sum = i * i*i-(i - 1) * (i - 1)*(i-1);
int j = 1;
while(j)
{
int sum1 = j * j + (j - 1) * (j - 1);
if (sum == (sum1*sum1) &&i!=j)
{
flag = true;
cout << i << " " << j << endl;
}
if ((sum1*sum1) >( sum))
{
break;
}
j++;
}
}
if (!flag)
cout << "No Solution" << endl;
}