一、实训目的及意义
目的
掌握人工智能基础理论与关键技术、数据处理与特征工程、机器学习与深度学习模型构建、自然语言处理与多模态技术、AI应用开发与部署、Coze等低代码AI平台实战开发、智能体设计与优化、行业AI解决方案设计,以及团队协作与创新能力。
意义
结合当前人工智能行业的实际需求,培养符合市场需求的AI应用开发与实施人才,为学生以后的AI工程师、数据分析师、智能系统开发等职业发展打下坚实基础。
通过项目实战,加深学生对人工智能基本原理、技术栈和开发流程的理解和应用,提升解决实际问题的能力。
二、课程目标
知识目标
掌握人工智能的基本概念、发展历程及主要技术方向。
理解机器学习、深度学习的基本原理和常用算法。
掌握自然语言处理(NLP)和计算机视觉(CV)的基础知识和典型任务。
了解大模型的基本原理和应用开发模式。
熟悉Coze等AI开发平台的功能和使用方法。
掌握AI应用从数据准备、模型训练到部署上线的全流程。
技能目标
能够使用Python进行数据处理、特征工程和可视化。
能够使用主流框架(如Scikit-learn、TensorFlow/PyTorch)构建和训练简单的机器学习模型。
能够使用Coze等平台设计、开发和部署智能体应用。
能够完成自然语言处理和多模态应用的开发实战。
能够独立排查并解决AI应用开发过程中的常见问题。
职业素养
团队协作与沟通:能够与团队成员有效沟通,协同完成AI项目开发。
问题解决能力:能够独立分析和解决AI应用开发过程中遇到的问题。
创新思维:具备将AI技术应用于实际场景的创新意识和能力。
伦理意识:了解AI伦理原则,树立负责任的AI开发理念。
三、实训模式
理论讲授
结合案例讲解人工智能的基础知识和核心技术。
实操演练
全天进行项目实践,通过动手做来加深理解。
分组合作
学生分组进行项目设计,培养团队协作与项目管理能力。
四、开发环境
技术栈
编程语言:Python
机器学习框架:Scikit-learn、TensorFlow/PyTorch
自然语言处理:Hugging Face、NLTK等
开发平台:Coze、DeepSeek API等
可视化工具:Matplotlib、Seaborn等
环境
硬件设备:配备GPU的计算机或云服务器
软件平台:python、VS Code等开发工具
云平台:提供云计算资源,支持模型训练和应用部署
五、需求说明
项目背景与目标:随着人工智能技术的快速发展,AI应用开发已成为各行各业数字化转型的核心能力。本项目旨在通过实训,让学生熟悉并掌握AI应用开发的基本流程和技术要点,以及智能体系统的设计和实战开发。
六、课程安排
阶段 |
课程内容 |
实训目的 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|