从零实现离线多语言识别(SenseVoice模型)

1. 模型介绍

SenseVoice 是具有多语言音频理解模型,支持语音识别(ASR)、语种识别(LID)、语音情感识别(SER)和声学事件分类(AEC)或声学事件检测(AED)、逆文本正则化等能力。采用工业级数十万小时的标注音频进行模型训练,保证了模型的通用识别效果。模型可以被应用于中文、粤语、英语、日语、韩语音频识别,并输出带有情感和事件的富文本转写结果。
在这里插入图片描述

  • 多语言识别: 采用超过40万小时数据训练,支持超过50种语言,识别效果上优于Whisper模型。
  • 支持自动语种检测(LID) :SenseVoice 在语音识别过程中可自动判断语种(如中文、粤语、英文等),无需手动指定参数 。
  • 技术原理 :模型训练时融合了多语言数据(超50种语言),通过共享编码器提取语言无关特征,在解码阶段动态选择对应语言路径 。
  • 局限性 :若需针对特定方言(如四川话、东北话)进一步优化,仍需微调模型或添加方言数据 。
  • 富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。
  • 高效推理: SenseVoice-Small模型采用非自回归端到端框架,推理延迟极低,10s音频推理仅耗时70ms,15倍优于Whisper-Large。

2. 代码

from funasr import AutoModel

model = AutoModel(
    model="./SenseVoiceSmall",
    disable_update=True,
    device="cpu"  # 或 "cuda" 如果有GPU
)    
res = model.generate(input="yue.mp3")
print("识别结果:", res[0]["text"])
res = model.generate(input="zh.mp3")
print("识别结果:", res[0]["text"])
res = model.generate(input="en.mp3")
print("识别结果:", res[0]["text"])

3. 模型下载

模型文件官网:【https://modelscope.cn/models】
网盘下载地址:【https://pan.baidu.com/s/1OOPIrm5PJyLMpceXghxGNA?pwd=zhan】
在这里插入图片描述

4. 执行结果

在这里插入图片描述

### 关于SenseVoice的技术文档与产品介绍 #### 一、SenseVoice概述 SenseVoice 是阿里巴巴推出的一款高性能语音基础模型,具备语音处理能力,包括但不限于自动语音识别(ASR)、语言识别(LID)、语音情感识别(SER)以及音频事件检测(AED)。该模型旨在为企业和个人用户提供高精度、多语言语音识别和音频分析功能[^1]。 #### 二、核心技术特点 SenseVoice 的核心优势在于其强大的语音理解和分析能力。以下是具体的功能特性: - **自动语音识别 (ASR)**:能够将语音信号化为文字,适用于会议记录、实时字幕等种场景。 - **语言识别 (LID)**:支持语种的语言分类,可快速判断输入语音所属的语言种类。 - **语音情感识别 (SER)**:通过分析语音中的情绪特征,识别说话者的情绪状态,如高兴、悲伤或愤怒等。 - **音频事件检测 (AED)**:除了常规的人声识别外,还可以检测特定的声音事件,例如掌声、笑声或咳嗽等非言语声音[^3]。 这些功能使得 SenseVoice 不仅适合传统的语音写任务,也能够在更复杂的媒体应用场景中发挥作用。 #### 三、部署方式 用户可以选择不同的部署模式来使用 SenseVoice: - **云端调用**:通过阿里云平台提供的 API 接口直接调用 SenseVoice 和其他配套服务,无需额外硬件投入即可享受高效稳定的语音处理能力。 - **本地化部署**:对于安全性要求较高的企业客户来说,可以下载官方发布的开源代码,在自有服务器环境中搭建完整的语音处理流水线[^2]。 #### 四、实际应用案例 在实际开发过程中,开发者可以通过 Python 脚本来完成简单的推理操作。下面给出一段基于预训练模型的小规模测试代码作为参考: ```python from model import SenseVoiceSmall model_dir = "iic/SenseVoiceSmall" m, kwargs = SenseVoiceSmall.from_pretrained(model=model_dir) res = m.inference( data_in="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav", language="auto", # 支持"zh","en","yue","ja","ko","nospeech" use_itn=False, **kwargs, ) print(res) ``` 此脚本展示了如何加载一个小型版本的 SenseVoice 模型并执行基本的 ASR 功能。 #### 五、与其他竞品对比 相较于 OpenAI 开发的 Whisper 系列模型SenseVoice 表现出更强的语音识别效果和更高的运行效率;特别是在中文及其他亚洲地区常用方言的支持度方面表现尤为突出。此外,它还增加了对特殊音效(比如鼓掌、笑声明显区别对待的能力),这使其成为某些特定领域内的首选工具之一[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

具身小站

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值