pytorch损失函数、反向传播、优化器【小土堆】

本文介绍了PyTorch中的损失函数(如L1Loss、MSELoss和CrossEntropyLoss),展示了如何在代码中使用这些函数进行模型训练,包括反向传播的原理和优化器(如SGD)的应用。作者通过实例演示了如何在CIFAR10数据集上实现一个简单的神经网络并进行参数优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自己学习的总结,有不对的地方欢迎指正,感谢各位

一、损失函数: 

1.简介:

Loss Function : torch.nn — PyTorch 2.2 documentationicon-default.png?t=N7T8https://pytorch.org/docs/stable/nn.html#loss-functions

 本节中主要讲了:

nn.L1Lossnn.MSELossnn.CrossEntropyLoss(链接可以直接跳转)

2.代码:

# 损失函数与反向传播
import torch
from torch.nn import L1Loss
from torch import nn
inputs = torch.tensor([1, 2, 3], dtype=torch.float32)
targets = torch.tensor([1, 2, 5], dtype=torch.float32)
print("inputs: " + str(inputs.shape))   # 格式显示
print("targets: " + str(targets.shape))

inputs = torch.reshape(inputs, (1, 1, 1, 3))  # batch_size, channel, 行, 列
targets = torch.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值