七布隆咚锵
科研菜鸟
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Windows搭建深度学习环境-基于Sublime
“ 撇弃繁琐常规环境,搭建简易深度学习环境。”原创 2023-04-13 08:10:59 · 191 阅读 · 0 评论 -
Jetson Orin Nano Super PyTorch 环境配置(Jetpack6.2)
在Jetson Orin Nano Super上部署模型时遇到诸多问题,Jetpack 6.2版本尤为棘手。主要问题包括PyTorch版本兼容性(安装2.5版本后缺少libcusparseLT.so文件)、torchvision版本匹配(出现nms不存在的错误)。最终通过YOLO官方提供的解决方案成功配置:安装特定版本的PyTorch和torchvision(2.5.0a0+872d972e41.nv24.08和0.20.0a0+afc54f7),并解决cuSPARSELt依赖问题。此外还安装了适配的onn原创 2025-06-11 16:37:25 · 261 阅读 · 0 评论 -
[YOLO]快速用注意力优化C3、C3x模块
yoloV5中核心模块都在common.py中定义,模块解析都在yolo.py中;所以基本流程就是在common.py定义新模块,在yolo.py解析模块;这里可以看到优化后的模型比yolov5n原模型的参数量更少,主要原因是CrossConv的作用,也是C3x和C3的主要差异,如果不用注意力的话,参数更少。然后再yolo.py文件中找到parse_model函数,并添加C3xA模块。将注意力代码放在C3x代码前面的任意位置(只要在调用之前就行)这里我直接复制了C3x模块代码,重新命名为C3xA。原创 2025-05-22 16:13:32 · 21 阅读 · 0 评论 -
基于PySide6和YOLOv5的目标检测GUI应用
本文介绍了一个基于PySide6和YOLOv5的目标检测GUI应用,旨在为用户提供一个直观且易于使用的界面,用于执行目标检测任务。该应用支持加载YOLOv5模型权重,允许用户选择输入文件(图像或视频),并设置检测参数如置信度阈值和输入图像尺寸。应用能够实时显示检测结果,并支持将结果保存为图像或视频原创 2025-05-19 18:17:10 · 37 阅读 · 0 评论 -
【注意力机制篇】
注意力机制是一种通过动态调整模型对输入特征的关注程度来提升检测性能的技术。它最初在自然语言处理领域取得成功后,逐渐被引入到计算机视觉领域,并在目标检测任务中展现出显著的效果。原创 2025-04-08 12:30:23 · 61 阅读 · 0 评论 -
YOLOv10【损失函数篇】
YOLOv10 是 YOLO 系列的最新版本,继承了 YOLO 系列的核心思想:将目标检测任务视为一个单一的回归问题,直接从图像像素到边界框坐标和类别标签进行预测。这种端到端的检测方式使得 YOLO 模型在速度和精度之间取得了良好的平衡。YOLOv10 在 YOLOv8 和 YOLOv9 的基础上进行了多方面的改进,包括网络架构的优化、损失函数的改进、数据增强策略的增强等,使其在各种基准数据集上均表现出卓越的性能。原创 2025-04-08 12:06:57 · 110 阅读 · 0 评论 -
YOLO目标检测数据增强、格式转换和数据集划分代码
YOLO目标检测数据增强、格式转换和数据集划分代码原创 2024-11-15 13:09:04 · 463 阅读 · 0 评论 -
统计数据集各个类别大中小目标数量(COCO数据集定义)
1.详细统计数据集各个类别大中小目标数量(目标尺寸按照COCO数据集定义);2.图像尺寸根据数据集中图像大小实时调整;3.只需要修改图像路径和标签路径,即可运行。原创 2025-04-07 15:17:35 · 161 阅读 · 0 评论 -
Papers with Code:科研与代码的完美结合,加速AI创新
Papers with Code:科研与代码的完美结合,加速AI创新原创 2025-03-05 14:35:35 · 327 阅读 · 4 评论