【ROS】【Python3】实现计算点云每一帧基于特征值的6维特征向量

本文详细介绍了一种在ROS环境中实现点云特征提取的方法,利用open3d库对点云数据进行预处理,通过主成分分析(PCA)计算特征值,并基于此提取六种关键特征,包括线性、平面性、散度性、全方差、特征熵和曲率变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在ros中实现计算每一帧点云的特征向量


思路流程

订阅点云数据

创建一个类class eigen_feature:

class eigen_feature:
	def __init__(self):
	def callback(self,lidar):
	def get_6features(self,eigenvalues):	
	def PCA(self,k_neighbor,sort=True):

其中的构造函数如下,订阅点云话题/rslidar_points,消息类型位PointCloud2

def __init__(self):
	# self.feature_pub = rospy.Publisher('/features',eigen_features,queue_size=1)
	self.pt_sub=rospy.Subscriber("/rslidar_points", PointCloud2, self.callback)
回调函数

当订阅到点云时,执行回调函数,回调函数中使用了open3d库。并且调用了类函数self.PCA、self.get_6features。其中,self.PCA对每一个点进行主成分分析,计算特征值和特征向量;self.get_6features函数根据PCA计算出的特征值计算基于特征值的6个特征。

def callback(self,lidar):
	
		# convert pointcloud2 to array
		lidar = pc2.read_points(lidar)
		points = np.array(list(lidar))
		
		# get a PointCloud
		point_cloud = PointCloud()
		point_cloud.points = Vector3dVector(points[:,0:3].reshape(-1,3))
    	
		# downsample
		point_cloud= point_cloud.voxel_down_sample(voxel_size=0.6)
		points=point_cloud.points
		points=np.asarray(points)
    	
		# build a kdtree
		pcd_tree = o3d.geometry.KDTreeFlann(point_cloud)
    	
		eigenfeatures = []
		K=19
		
		save_filename='/home/s/Dataset/syz.txt'
		
		for i in range(points.shape[0]):
			[k,index,_]=pcd_tree.search_knn_vector_3d(point_cloud.points[i],K+1)
			
			eigenvalues,eigenvectors=self.PCA(points[index[:],:])
			
			tmp=self.get_6features(eigenvalues=eigenvalues)
			
			eigenfeatures.append(tmp)
			
		# print("eigenfeatures size:{}".format(len(eigenfeatures)))
		
		# convert list[] to array
		eigenfeatures=np.array(eigenfeatures)
		print('eigenfeatures shape:{}'.format(eigenfeatures.shape))
			
		np.savetxt(save_filename,eigenfeatures)
		print(save_filename+" save!")

		# 退出
		try:
			os._exit(0)
		except:
			print('Program is dead')

self.PCA

def PCA(self,k_neighbor,sort=True):
	k_neighbor_T=k_neighbor.T
	C=np.matmul(k_neighbor_T,k_neighbor) # 3x3
	eigenvalues,eigenvectors=np.linalg.eig(C)

	if sort:
		sort=eigenvalues.argsort()[::-1]
		eigenvalues = eigenvalues[sort]
		eigenvectors = eigenvectors[:, sort]
	return eigenvalues, eigenvectors

self.get_6features

	
def get_6features(self,eigenvalues):
	
	v1=np.float(eigenvalues[0]) 
	v2=np.float(eigenvalues[1])
	v3=np.float(eigenvalues[2])
	
	sum=v1+v2+v3
	if sum==0:
		sum=0.000000001
	e1=v1/sum
	e2=v2/sum
	e3=v3/sum

	# print('v1:{},v2:{},v3:{}'.format(v1,v2,v3))
	if v1==0:
		v1=0.000000001
	L=(v1-v2)/v1   # 线性
	P=(v2-v3)/v1   # 平面性
	S=v3/v1        # 散度性
	O=3*np.power(e1*e2*e3,1/3)   # 全方差

	if e1<=0:
		e1=0.000000001
	if e2<=0:
		e2=0.000000001
	if e3<=0:
		e3=0.000000001

	E=e1*np.log(e1)+e2*np.log(e2)+e3*np.log(e3)  # 特征熵
	E=E*(-1)
	C=3*v3/sum       # 曲率变化

	return [L,P,S,O,E,C]
初始化节点
if __name__ == '__main__':
	print('------------------start-----------------')
	print("open3d:{}".format(o3d.__version__))
	eigen=eigen_feature()  # 初始化类,会调用类构造函数
	rospy.init_node('eigenfeature')  # 初始化节点
	rospy.spin()  # 一直循环(好像是这个意思)

完整代码

https://github.com/suyunzzz/aiimooc_lesson/tree/master/aiimooc_syz3

要注意代码运行时需要在对应的conda环境中运行,如果不知道怎么做可以参考我的上一篇博客

参考

https://github.com/suyunzzz/aiimooc_lesson/tree/master/aiimooc_syz3
点云生成鸟瞰图(Python)

<think>好的,我现在需要解决用户的问题:如何用点云的平均值作为粒子滤波跟踪的表示方法。用户已经提供了一些相关的引用资料,我需要结合这些信息来构建回答。 首先,我得理解用户的需求。用户希望用一帧点云的平均值来代表该帧的信息,然后用粒子滤波进行跟踪。这可能涉及到点云处理、滤波方法以及粒子滤波的应用。根据引用[1]和[3],点云预处理需要滤波和去噪,这可能影响平均值的准确性。所以,在计算平均值之前,必须对点云进行预处理,去除噪声和杂波,确保数据质量。 接下来,粒子滤波的原理。根据引用[2],粒子滤波基于贝叶斯框架,通过预测和更新步骤来估计状态。用户想用平均值作为观测值,所以需要将点云的平均值作为观测模型的一部分。也就是说,每个粒子可能代表一个可能的状态(比如位置或速度),然后计算该状态对应的预测点云平均值,再与实际观测的平均值比较,更新粒子权重。 然后,具体步骤可能包括: 1. 预处理点云数据,去除噪声(引用[1][3])。 2. 计算每帧点云的平均值,作为该帧的位置特征。 3. 设计粒子滤波的状态模型,比如物体的位置和速度。 4. 观测模型中,将粒子的预测位置生成预测点云的平均值,与实际观测的平均值比较,计算权重。 5. 重采样步骤,根据权重调整粒子分布,估计当前状态。 需要注意的是,点云的平均值可能不足以表示复杂运动,特别是当物体形状变化或部分遮挡时。这时候可能需要结合其他特征,如引用[3]提到的动态对象去除,或者引用[4]中的点云转换方法,将点云转换为更适合处理的形式,比如LaserScan,但用户这里希望用平均值,所以可能需要优化观测模型。 可能的问题:如何高效计算点云平均值?是否需要对点云进行降采样?在粒子滤波中,如何将状态(如位置)映射到预测的点云平均值?可能需要建立运动模型,比如假设物体匀速运动,预测下一时刻的位置,并生成该位置的预测点云,然后计算其平均值。或者,如果跟踪的是物体的质心,可以直接用状态的位置作为预测的平均值,这样观测模型就是实际平均值与预测位置的差异。 此外,粒子滤波的性能可能受粒子数量、运动模型准确性、观测噪声等因素影响。需要调整参数,比如引用[2]中的贝叶斯更新步骤,合理设置过程噪声和观测噪声的分布。 总结步骤应该是:预处理点云计算平均值→初始化粒子→预测粒子状态→计算预测平均值→更新权重→重采样→输出估计状态。同时,需要考虑点云动态对象的干扰(引用[3]),可能需要结合静态地图构建,去除动态点云部分,确保平均值更稳定。 可能用户需要具体的代码示例,比如如何计算平均值,如何集成到粒子滤波框架中。例如,在Python中,计算点云坐标的平均,可以用numpy.mean。然后,在粒子滤波的更新步骤中,计算每个粒子对应的预测平均值与实际的平均值的差异,用高斯分布或其他分布计算权重。 最后,用户的应用场景可能涉及机器人定位或目标跟踪,引用[4]提到AMCL是ROS中的粒子滤波定位,可能可以参考其实现方式,将点云平均值作为观测输入,调整现有的粒子滤波算法。</think>### 使用点云平均值进行粒子滤波跟踪的实现方法 #### 1. **点云预处理与平均值计算** 首先需要对原始点云进行滤波和去噪处理,以消除噪声和动态对象的干扰[^1][^3]。例如,使用统计滤波或半径滤波去除离群点。预处理后,计算一帧点云的几何中心(平均值): $$ \bar{\mathbf{p}} = \frac{1}{N}\sum_{i=1}^{N} \mathbf{p}_i $$ 其中$\mathbf{p}_i$为点云中第$i$个点的坐标,$N$为点数。 #### 2. **粒子滤波状态建模** 定义跟踪目标的状态向量$\mathbf{x}_t = [x, y, z, \dot{x}, \dot{y}, \dot{z}]$,包含位置和速度。每个粒子表示一个可能的状态假设。 #### 3. **运动模型预测** 假设目标匀速运动,预测下一时刻粒子状态: $$ \mathbf{x}_t = \mathbf{x}_{t-1} + \Delta t \cdot \dot{\mathbf{x}}_{t-1} + \mathbf{w} $$ 其中$\mathbf{w}$为过程噪声(通常假设为高斯分布)。 #### 4. **观测模型设计** 将粒子预测的位置$\mathbf{x}_t^{pred}$与当前帧点云平均值$\bar{\mathbf{p}}_t^{obs}$进行匹配。定义观测似然函数: $$ w_i \propto \exp\left(-\frac{\|\mathbf{x}_t^{pred(i)} - \bar{\mathbf{p}}_t^{obs}\|^2}{2\sigma^2}\right) $$ 其中$\sigma$为观测噪声参数。 #### 5. **算法实现步骤 ```python import numpy as np class ParticleFilter: def __init__(self, num_particles): self.particles = np.random.rand(num_particles, 6) # 状态向量 self.weights = np.ones(num_particles) / num_particles def predict(self, dt, process_noise): # 匀速运动模型 self.particles[:, :3] += dt * self.particles[:, 3:] self.particles += np.random.randn(*self.particles.shape) * process_noise def update(self, observed_mean): # 计算权重 diffs = self.particles[:, :3] - observed_mean distances = np.linalg.norm(diffs, axis=1) self.weights = np.exp(-0.5 * (distances**2) / 0.1) # 0.1为噪声方差 self.weights /= np.sum(self.weights) def resample(self): # 系统重采样 indices = np.random.choice(range(len(self.particles)), size=len(self.particles), p=self.weights) self.particles = self.particles[indices] self.weights = np.ones_like(self.weights) / len(self.weights) # 使用示例 pf = ParticleFilter(1000) for point_cloud in frame_sequence: filtered_cloud = statistical_filter(point_cloud) # 预处理 current_mean = np.mean(filtered_cloud, axis=0) pf.predict(dt=0.1, process_noise=0.05) pf.update(current_mean) pf.resample() estimated_state = np.mean(pf.particles, axis=0) ``` #### 6. **优化建议 - **动态对象处理**:结合引用[3]的静态地图构建方法,先去除动态点云 - **多特征融合**:除了位置均值,可加入点云协方差矩阵等特征 - **自适应噪声**:根据点云密度动态调整观测噪声参数$\sigma$ - **并行计算**:使用GPU加速粒子状态更新
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tech沉思录

点赞加投币,感谢您的资瓷~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值