混沌信号驱动的混沌振荡器同步现象研究
1. 混沌振荡器同步的多种现象
在混沌系统的研究中,存在着多种同步现象。首先是级联同步,在这种现象里,一个响应系统可以作为另一个系统的驱动,如此循环,从而构建出复杂的混沌振荡器网络。
不同的模型被用于研究同步相关的特性。例如,Rössler模型被用来展示如何通过增加耦合强度,利用连续控制方案使所有条件Lyapunov指数变为负数。而Duffing振荡器则表明,在连续控制下的同步对外部噪声具有鲁棒性。也就是说,在没有噪声时实现了完美同步,加入微弱噪声并不会破坏同步,而是会导致接近同步的状态,就像参数不匹配时的情况一样,这对于同步的实际观测和应用具有重要意义。
另外,不同系统在不同的替换方法下,通过数值模拟观察到了不同形式的混沌边缘同步。在Lorenz模型和Chua电路的系统分解方案中,分别研究了混沌吸引子的放大和位移。对这些现象在外部噪声下的研究发现,对于每个噪声水平,都存在一个可以清晰观察到同步的时间窗口,且该窗口的宽度与噪声幅度遵循幂律关系,这意味着这种边缘稳定的现象在实验中是可以被观测到的。边缘同步还在化学振荡器的计算机模拟、高维系统以及一些Sprott吸引子中被观察到。并且,通过对连续控制方案下混沌边缘同步的数值研究表明,通过修改控制机制,可以将同步状态的稳定性从边缘稳定转变为渐近稳定。
还有一种同步现象是预期同步,它最初在Ikeda模型中被观察到,该模型与Mackey和Glass模型类似,两种模型中观察到的现象本质上是相同的。进一步的数值研究表明,预期同步对噪声和参数不匹配具有鲁棒性。在修改后的驱动 - 响应配置下对混沌流(主要是Rössler和Lorenz模型)的研究发现,观察到同步的预期时间τ通常比所考虑系统的