混沌系统的同步、控制与扰动
广义同步的相关内容
广义同步是混沌系统研究中的一个重要概念。在一些系统中,向广义同步的转变意味着响应吸引子会发生变化。例如,在洛伦兹吸引子的例子中,转变前呈现出特征性的蝴蝶形状,而实现广义同步后则变为全新的环形吸引子。
可以通过辅助系统方法来检测广义同步。以由罗斯勒振荡器驱动的洛伦兹振荡器系统为例,在同步阈值以下,响应与驱动的参数图以及辅助系统与响应的参数图呈现出点的云状分布,这表明缺乏相同和广义同步;而在同步阈值以上,响应与驱动的参数图仍为云状,但辅助系统与响应的参数图中,点云会塌缩为斜率为 1 的直线段,这是广义同步的标志。
通常认为广义同步是针对非相同系统的一种同步形式,但实际上,即使驱动和响应系统具有相同的个体动力学,也可能观察到广义同步现象。例如在对称混沌系统中,其在某些子空间具有不变性,运动方程在特定变换下保持不变。以在某平面绕 π 弧度旋转不变的系统为例,存在两种可能的同步状态:一种是相同同步,同步条件为 (D_0 (t) \equiv|w′(t) - w(t)| \to 0);另一种是广义同步,由简单函数关系 (\varphi [w (t)] = -w (t)) 给出,同步条件为 (D_{\pi} (t) \equiv|w′(t) + w(t)| \to 0)。
下面给出一个具体的混沌流例子:
(\begin{cases}
\dot{x_1} = x_2 + 3.2 \sin (1.4 x_2) \
\dot{x_2} = -x_2 - (x_3 - R) x_1 \
\dot{x_3} = x_1^2 - x_3
\end{cases})
该系统在 (x_