自编码器:从基础到变分自编码器的深入解析
1. 卷积自编码器实验
1.1 训练与结果展示
我们训练了一个仅含 20 个潜在变量的卷积自编码器,和之前一样训练了 50 个周期。此时模型仍在改进,但为了与之前的模型进行比较,我们在 50 个周期时停止训练。图 18 - 30 展示了测试集中的五个示例以及它们经过卷积自编码器解压后的版本。结果相当不错,解压后的图像虽与原图像不完全相同,但非常接近。
1.2 输入噪声实验
为了好玩,我们给解码器输入噪声。由于潜在变量是一个 7×7×3 的张量,所以噪声值也需要是相同形状的 3D 体积。图 18 - 31 展示了输入随机值张量到解码器阶段后生成的图像,结果是随机的斑点图像,对于随机输入来说,这似乎是合理的输出。
1.3 潜在变量混合实验
我们尝试混合卷积自编码器中的潜在变量。图 18 - 32 展示了使用与图 18 - 26 相同图像的网格,我们找到前两行中每个图像的潜在变量,将它们均匀混合,然后对插值后的变量进行解码以创建第三行的图像。结果有些模糊,不过有些图像能看出是上面两行图像的混合。图 18 - 33 展示了与之前图 18 - 27 中相同的三次混合过程中的多个步骤。每行的左右两端是对 MNIST 图像进行编码和解码后创建的图像,中间是混合它们的潜在变量然后解码的结果。这看起来并不比我们之前简单的自编码器好多少,说明即使有更多的潜在变量,当使用与训练样本差异过大的输入进行重建时,仍然会遇到问题。
1.4 新输入预测实验
我们给卷积神经网络输入低分辨率的老虎图像进行预测,结果如图 18 - 34 所示。如果眯着眼看,似乎