68、深入了解深度学习:概念、技术与应用

深入了解深度学习:概念、技术与应用

1. 图像来源与数据准备

1.1 图像版权信息

图像来源广泛,来自Wikimedia和Wikiart的作品属于公共领域,来自Pixabay的图像遵循Creative Commons CC0许可,也属于公共领域,未注明来源的图像由作者提供。以下是部分图像示例:
| 章节 | 图像名称 | 链接 |
| — | — | — |
| Chapter 1 | Bananas | https://pixabay.com/en/bananas-1642706 |
| Chapter 1 | Cat | https://pixabay.com/en/cat-2360874 |
| Chapter 10 | Cow | https://pixabay.com/en/cow-field-normande-800306 |

1.2 数据准备要点

数据准备工作至关重要,涵盖数据清理、扩充和规范化等环节。具体操作如下:
- 数据清理 :去除数据中的异常值和噪声,保证数据的质量。例如在处理图像数据时,剔除模糊、损坏的图像。
- 数据扩充 :通过旋转、翻转、缩放等操作增加数据量,提升模型的泛化能力。比如对图像进行随机旋转和翻转。
- 数据规范化 :对数据进行归一化或标准化处理,使数据在相同的尺度上,有助于模型的训练。常见的方法有均值归一化和方差归一化。

2. 深度学习基础概念

2.1 神经元与神经网络

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值