linux下安装TensorFlow(centos)

本文档详细介绍了如何在CentOS上安装Python及其依赖项pip,并提供了不同版本Python和TensorFlow的安装步骤。同时,还提供了测试安装是否成功的示例Python脚本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、python安装

  centos自带python2.7.5,这一步可以省略掉。

二、python-pip

  pip--python index package,累世linux的yum,安装管理python软件包用的。

yum install  python-pip python-devel

 

三、安装tensorflow

  安装基于linux和python2.7的tensorflow 0.9

pip install https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.9.0-cp27-none-linux_x86_64.whl

  其他操作系统版本可以参照下表:

  

复制代码
# Ubuntu/Linux 64-bit, CPU only, Python 2.7
 export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.9.0-cp27-none-linux_x86_64.whl

# Ubuntu/Linux 64-bit, GPU enabled, Python 2.7
# Requires CUDA toolkit 7.5 and CuDNN v4. For other versions, see "Install from sources" below.
 export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.9.0-cp27-none-linux_x86_64.whl

# Mac OS X, CPU only, Python 2.7:
 export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/tensorflow-0.9.0-py2-none-any.whl

# Ubuntu/Linux 64-bit, CPU only, Python 3.4
 export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.9.0-cp34-cp34m-linux_x86_64.whl

# Ubuntu/Linux 64-bit, GPU enabled, Python 3.4
# Requires CUDA toolkit 7.5 and CuDNN v4. For other versions, see "Install from sources" below.
 export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.9.0-cp34-cp34m-linux_x86_64.whl

# Ubuntu/Linux 64-bit, CPU only, Python 3.5
 export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.9.0-cp35-cp35m-linux_x86_64.whl

# Ubuntu/Linux 64-bit, GPU enabled, Python 3.5
# Requires CUDA toolkit 7.5 and CuDNN v4. For other versions, see "Install from sources" below.
 export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.9.0-cp35-cp35m-linux_x86_64.whl

# Mac OS X, CPU only, Python 3.4 or 3.5:
 export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/tensorflow-0.9.0-py3-none-any.whl
复制代码

四、测试安装是否成功

  编写python脚本 test.py

复制代码
import tensorflow as tf
hello = tf.constant('Hello,TensorFlow!')
sess = tf.Session()
print(sess.run(hello))
a = tf.constant(10)
b = tf.constant(32)
print(sess.run(a + b))
复制代码

运行 python test.py结果如下:

大功告成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值