线性动力系统的鲁棒稳定性、极小极大稳定化与极大极小测试
在控制理论领域,线性动力系统的稳定性和性能评估至关重要。本文将深入探讨线性动力系统的鲁棒稳定性、极小极大稳定化和极大极小测试等问题,介绍相关的理论和方法,并通过具体例子进行说明。
1. 极小极大稳定化与对抗博弈
考虑一个受控系统:
$\dot{x} = Ax + bu_1$
其中,$x = (x_1, \ldots, x_n)^T$ 是 $n$ 维广义坐标向量,$\det(b, Ab, A^2b, \ldots, A^{n - 1}b) \neq 0$。同时,引入一个性能准则:
$\phi(u_1, x(t_0)) = \int_{t_0}^{t_1} (x^T Gx + s_0u_1^2) d\tau + x^T(t_1)S_1x(t_1)$
这里,$t_1 \leq \infty$,$G^T = G \geq 0$,$s_0 > 0$,$S_1^T = S_1 \geq 0$,$|x(t_0)| \leq 1$。假设控制 $u_1(\cdot)$ 具有闭环形式 $u_1 = k^T x$,$k = (k_1, \ldots, k_n)^T$,$k \in Q_0$,$Q_0$ 是 ${k \in R^n : Re\lambda_j \leq -\alpha_0, \alpha_0 > 0, \det(\lambda_j E_n - A - bk^T) = 0, j = 1, \ldots, n}$ 的一个凸闭有界子集,$R^n$ 是欧几里得空间,$E_n$ 是单位矩阵。此时,性能准则 $\phi(u_1, x(t_0))$ 可表示为 $\phi(k, x(t_0))$:
$\ph