受控压电场解的动力学研究
1. 引言与主要问题
在当今技术领域,带有压电元件的技术设备应用广泛,如用于图像稳定和精确定位等。因此,研究受控压电过程和场的动力学成为一个实际且重要的问题。在控制这类系统时,脉冲或平滑控制是常见且可行的方式。为了使系统达到期望状态,构建能够精确逼近必要状态的相互作用函数的方法选择至关重要。
1.1 传统逼近方法的局限性
从数学分析可知,在闭区间上的任何连续函数都可以用多项式逼近到参数 ε 的精度。然而,为了提高插值精度,需要增加插值节点,这会导致多项式阶数增加,进而使误差增大。另一种方法是样条插值,它在每个插值节点之间的区间上是低阶多项式。但对于三次样条,为了保持逼近精度,需要关于被恢复函数的额外信息,并且这种插值只能在几个节点的小间隔内进行。
1.2 新的逼近方法
在本次研究中,引入了间隙并考虑分段常数函数。相互作用函数表示为凸泛函的次微分之差:
[
\partial J_1(\cdot) - \partial J_2(\cdot)
]
其中 (J_i : H \to R)((i = 1, 2))是局部 Lipschitz 泛函,(\partial J_i(\cdot)) 是 (J_i(\cdot)) 的 Clarke 次微分,(H) 是 Hilbert 空间。假设 (J_i(\cdot))((i = 1, 2))满足以下条件:
- 泛函 (J_i : H \to R)((i = 1, 2))是局部 Lipschitz 且正则的,即对于任意 (x, v \in H),存在通常的单侧方向导数 (J_i’(x; v) = \lim_{t \to 0} \fr