NLP(III):n-gram语言模型

本文介绍了n-gram语言模型的概念,并通过nltk库训练了一元、二元和三元模型,详细讨论了计算困惑度的方法,以及如何利用训练好的模型生成模拟语料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NLP(III):n-gram语言模型

什么是n-gram语言模型

这一篇文章讲的非常好:自然语言处理中N-Gram模型介绍

使用nltk训练n-gram语言模型

这里我们训练一元、二元以及三元模型(unigram, bigram, trigram)。数据是上一节预处理过的推文。
请注意,n-gram模型是一个滑窗模型,因此在句首和句尾需要padding。

from nltk.lm.preprocessing import padded_everygram_pipeline
from nltk.lm import MLE

def trainNGramAddOneSmoothing(trainData,ngram):
  # Input: a list of tweet sentences, each element is a list of tokens; n for ngram model
  
  # Output: a n-gram model with add-one smoothing trained on your input data. 
  
  train, vocab = padded_everygram_pipeline(ngram, trainData)
  
  lm = MLE(ngram)
  lm.fit(train, vocab)
  return lm


unigramFish = trainNGramAddOneSmoothing(preprocessedFishTrain, 1)
bigramFish = trainNGramAddOneSmoothing(preprocessedFishTrain, 2)
trigramFish = trainNGramAddOneSmoothing(preprocessedFishTrain, 3)
计算困惑度

接下来我们分析生成的模型,其中一个指标是模型相对于测试集的困惑度(perplexity)。使用nltk计算困惑度可以参考官方网站:NLTK::nltk.lm package

def computePerplexity(model,testData):
  # Input: your model; the testing data

  # Output: average perplexity of the model on your testing data.
  scoreSum = 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值